Skip to main content

Dynamic Characterization of Viscoelastic Components

  • Conference paper
  • First Online:
Book cover Mechatronic Systems: Theory and Applications

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1375 Accesses

Abstract

Characterizing frictional behavior of viscoelastic joints is investigated in the present work. A new visco-tribological model was developed by coupling the rheological Generalized Maxwell model (GMM) and Dahl friction model. Parameters of the proposed model are identified from Dynamic Mechanical Analysis (DMA) tests for different excitation frequencies. Comparison between measurements and simulations of hysteretic friction of the viscoelastic component has been carried on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Majid A, Dufour R (2004) Harmonic response of a structure mounted on an isolator modelled with a hysteretic operator: experiments and prediction. J Sound Vib 277(1–2):391–403

    Article  Google Scholar 

  • Armstrong-Hétlouvry B, Dupont P, Canudas de Wit C (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138

    Article  Google Scholar 

  • Awrejcewicz J, Lamarque CH (2003) Bifurcation and chaos in nonsmooth mechanical systems. World Sci Publ, Singapore

    MATH  Google Scholar 

  • Barbosa F, Farage M (2008) A finite element model for sandwich viscoelastic beams: experimental and numerical assessment. J Sound Vib 317(1–2):91–111

    Article  Google Scholar 

  • Canudas de Wit C, Olsson H, Åström KJ, Lischinsky P (1995) A new model for control systems with friction. IEEE Trans Autom Control AC 40:419–425

    Google Scholar 

  • Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. In: Society IP (ed) La Rivista del Nuovo Cimento (1971–1977), vol 1. Italian Physical Society, pp 161–198

    Google Scholar 

  • Castello D, Rochinha F, Roitman N, Magluta C (2008) Constitutive parameter estimation of a viscoelastic model with internal variables. Mech Syst Sig Process 22(8):1840–1857

    Article  Google Scholar 

  • Chen T (2000) Determining a prony series for a viscoelastic material from time varying strain data, Technical report, NASA

    Google Scholar 

  • Chevalier Y (2002) Essais dynamiques sur composites. caractérisation aux basses fréquences, Technical report, Techniques de l’ingénieur

    Google Scholar 

  • Chevalier Y, Vinh JT (2010) Mechanics of viscoelastic materials and wave dispersion, vol 1. ISTE and John Wiley & Sons, Hoboken

    Google Scholar 

  • Chevallier G (2005) Etude des vibrations de broutement provoquées par le frottement sec—application aux systèmes d’embrayage, Ph.D. thesis P6—LISMMA SUPMECA

    Google Scholar 

  • Dahl PR (1968) A solid friction model, The Aerospace Corporation, El-Segundo, TOR-158(3107-18), California

    Google Scholar 

  • Dion JL (1995) Modélisation et identification du comportement dynamique de liaisons hydro-élastiques, Ph.D. thesis, ISMCM, Saint-Ouen

    Google Scholar 

  • Eborn J, Olsson M (1995) Modelling and simulation of an industrial control loop with friction. In: Proceedings of the 4th IEEE conference on control applications, Albany, New York, pp 316–322

    Google Scholar 

  • Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst Sig Process 5(2):81–88

    Article  Google Scholar 

  • Haessig DA Jr, Friedland B (1991) On the modeling and simulation of friction. J Dyn Syst Meas Control 113:354–362

    Google Scholar 

  • Huynh A, Argoul P, Point N, Dion JL, (2002) Rheological models using fractional derivatives for linear viscoelastic materials: application to identification of the behavior of elastomers. In: 13th symposium noise, shock and vibration, Lyon

    Google Scholar 

  • Karnopp D (1985) Computer simulation of slip-stick friction in mechanical dynamic systems. J Dyn Sys Meas Contr 107(1):100–103

    Article  Google Scholar 

  • Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51(2):299–307

    Article  MATH  MathSciNet  Google Scholar 

  • Long AHK (2005) Analysis of the dynamic behavior of an elastomer: modeling and identification, Ph.D. thesis, LISMMA, SUPMECA, Paris

    Google Scholar 

  • Moreau A (2007) Identification of viscoelastic properties of polymeric materials by field measurements of frequency response of structures, Ph.D. thesis, LMR, INSA, Rouen

    Google Scholar 

  • Oberst H, Frankenfeld K (1952) Damping of the bending vibrations of thin laminated metal beams connected through adherent layer. Acustica 2:181–194

    Google Scholar 

  • Oustaloup A (1991) La commande CRONE: commande robuste d’ordre non entier, Hermés

    Google Scholar 

  • Park SW (2001) Analytical modeling of viscoelastic dampers for structural and vibration control. Int J Solids Struct 38:8065–8092

    Article  MATH  Google Scholar 

  • Renaud F, Dion JL, Chevallier G, Tawfiq I, Lemaire R (2011) A new identification method of viscoelastic behavior: application to the generalized Maxwell model. Mech Syst Sig Process 25(3):991–1010

    Article  Google Scholar 

  • Saad P (2003) Nonlinear behavior of rubber bush, modeling and identification, Ph.D. thesis, LTDS, Ecole Centrale De Lyon, Lyon

    Google Scholar 

  • Soula M, Chevalier Y (1998) The fractional derivative rheological polymers—application to elastic and viscoelastic behaviors linear and nonlinear elastomers. ESAIM Proc Fract Differ Syst 5:193–204

    Article  MATH  MathSciNet  Google Scholar 

  • Stribeck R (1902) Die Wesentlichen Eigenschaften der Gleit—und Rollenlager—the key qualities of sliding and roller bearings, Zeitschrift des Vereines Seutscher Ingenieure, 46, 38, pp 1342–48, 46, 39, 1432–1437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanen Jrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jrad, H., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M. (2014). Dynamic Characterization of Viscoelastic Components. In: Abbes, M., Choley, JY., Chaari, F., Jarraya, A., Haddar, M. (eds) Mechatronic Systems: Theory and Applications. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-07170-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07170-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07169-5

  • Online ISBN: 978-3-319-07170-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics