Skip to main content

Complex Network Analysis of Recurrences

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We present a complex network-based approach to characterizing the geometric properties of chaos by exploiting the pattern of recurrences in phase space. For this purpose, we utilize the basic definition of a recurrence as the mutual proximity of two state vectors in phase space (disregarding time information) and re-interpret the recurrence plot as a graphical representation of the adjacency matrix of a random geometric graph governed by the system’s invariant density. The resulting recurrence networks contain exclusively geometric information about the system under study, which can be exploited for inferring quantitative information on the geometric properties of the system’s attractor without explicitly studying scaling characteristics as in the case of “classical” fractal dimension estimates.

Similar as the established recurrence quantification analysis, recurrence networks can be utilized for studying dynamical transitions in non-stationary systems, as well as for automatically discriminating between chaos and order without the necessity of extensive computations typically necessary when inferring this distinction based on the systems’ maximum Lyapunov exponents. Moreover, we provide a thorough re-interpretation of two bi- and multivariate generalizations of recurrence plots in terms of complex networks, which allow tracing geometric signatures of asymmetric coupling and complex synchronization processes between two or more chaotic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, phase-coherent describes chaotic oscillations around a well-defined center in a suitably chosen two-dimensional projection of the system [111, 112], whereas such a projection is not possible in the funnel regime.

  2. 2.

    Here, \(\varepsilon\)-balls refers to general (hyper-)volumes according to the specific norm chosen for measuring distances in phase space, e.g., hypercubes of edge length \(2\varepsilon\) in case of the maximum norm, or hyperballs of radius \(\varepsilon\) for the Euclidean norm.

  3. 3.

    In Eq. (4.7) as well as several following definitions, we skip the condition ijv for simplicity, since A ii  = 0 for all vertices i according to our RN definition Eq. (4.4).

  4. 4.

    Strictly speaking, this is only true if the recurrence rate is defined such that the main diagonal in the RP is excluded in the same way as potential self-loops from the RN’s adjacency matrix.

  5. 5.

    It is important to realize that cross-recurrences are not to be understood in the classical sense of Poincaré’s considerations, since they do not indicate the return of an isolated dynamical system to some previously assumed state. In contrast, they imply an arbitrarily delayed close encounter of the trajectories of two distinct systems and, therefore, should be better named cross encounters instead. Following the same reasoning, terms such as cross-recurrence plot or cross-recurrence rate are suggestive, but potentially misleading. However, to comply with the existing literature on cross-recurrence plots, we will adopt the established terms even despite their conceptual ambiguities.

  6. 6.

    One corresponding strategy could be utilizing methods for community detection in networks [36], such as consideration of modularity [71]. Notably, such idea has not yet been explored in the context of RN analysis, and it is unclear to what extent the inferred possible community structure of an IRN could exhibit relevant information for studying any geometric signatures associated with the mutual interdependences between different dynamical systems. To this end, we leave this problem for future research.

  7. 7.

    In the specific case of an IRN, we interpret this as geometric signatures of the coupling between the underlying dynamical systems X k and X l [33, 34].

  8. 8.

    For ergodic systems, sampling from one long trajectory, ensembles of short independent realizations of the same system, or directly from the invariant density should lead to networks with the same properties at sufficiently large N.

  9. 9.

    In fact, we should take here the transitivity dimension of the RN obtained for XY, i.e., \(\hat{D}_{\mathcal{T}^{X\otimes Y }} =\log (\hat{\mathcal{T}}^{X\otimes Y })/\log (3/4)\), which is in general not identical to the pseudo-dimension \(\hat{\tilde{D}}_{\mathcal{T}^{J}}\) due to the different metrics used for the definition of recurrences of XY and joint recurrences of X and Y.

References

  1. R. Albert, A.L. Barabasi, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). doi:10.1103/RevModPhys.74.47

    ADS  MATH  MathSciNet  Google Scholar 

  2. M.J. Barber, Modularity and community detection in bipartite networks. Phys. Rev. E 76(6), 066102 (2007). doi:10.1103/PhysRevE.76.066102

    MathSciNet  Google Scholar 

  3. A. Barrat, M. Weigt, On the properties of small-world network models. Eur. Phys. J. B 13, 547–560 (2000). doi:10.1007/s100510050067

    ADS  Google Scholar 

  4. P. beim Graben, A. Hutt, Detecting recurrence domains of dynamical systems by symbolic dynamics. Phys. Rev. Lett. 110, 154101 (2013). doi:10.1103/PhysRevLett.110.154101

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). doi:10.1016/j.physrep.2005.10.009

    ADS  MathSciNet  Google Scholar 

  6. S. Böse, Recurrence network analysis of remote sensing data. Master’s thesis, University of Bayreuth (2012)

    Google Scholar 

  7. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010). doi:10.1038/nature08932

    ADS  Google Scholar 

  8. H. Cao, Y. Li, Unraveling chaotic attractors by complex networks to measure the complexity of stock markets. Chaos. 24(1), 013134 (2014). doi:10.1063/1.4868258

    Google Scholar 

  9. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007). doi:10.1080/00018730601170527

  10. J. Dall, M. Christensen, Random geometric graphs. Phys. Rev. E 66(1), 016121 (2002). doi:10.1103/PhysRevE.66.016121

    MathSciNet  Google Scholar 

  11. C.S. Daw, C.E.A. Finney, E.R. Tracy, A review of symbolic analysis of experimental data. Rev. Sci. Instrum. 74(2), 915–930 (2003). doi:10.1063/1.1531823

    ADS  Google Scholar 

  12. J. Donges, Functional network macroscopes for probing past and present earth system dynamics: complex hierarchical interactions, tipping points, and beyond. Ph.D. thesis, Humboldt University, Berlin, 2012

    Google Scholar 

  13. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The backbone of the climate network. Europhys. Lett. 87(4), 48007 (2009). doi:10.1209/0295-5075/87/48007

    Google Scholar 

  14. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Complex networks in climate dynamics: comparing linear and nonlinear network construction methods. Eur. Phys. J. Spec. Top. 174, 157–179 (2009). doi:10.1140/epjst/e2009-01098-2

    Google Scholar 

  15. J.F. Donges, R.V. Donner, K. Rehfeld, N. Marwan, M.H. Trauth, J. Kurths, Identification of dynamical transitions in marine palaeoclimate records by recurrence network analysis. Nonlinear Process. Geophys. 18(5), 545–562 (2011). doi:10.5194/npg-18-545-2011

    ADS  Google Scholar 

  16. J.F. Donges, R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, J. Kurths, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl. Acad. Sci. USA 108, 20422–20427 (2011). doi:10.1073/pnas.1117052108

    ADS  Google Scholar 

  17. J.F. Donges, H.C.H. Schultz, N. Marwan, Y. Zou, J. Kurths, Investigating the topology of interacting networks. Eur. Phys. J. B 84(4), 635–652 (2011). doi:10.1140/epjb/e2011-10795-8

    ADS  Google Scholar 

  18. J.F. Donges, J. Heitzig, R.V. Donner, J. Kurths, Analytical framework for recurrence network analysis of time series. Phys. Rev. E 85, 046105 (2012). doi 10.1103/PhysRevE.85.046105

    ADS  Google Scholar 

  19. J.F. Donges, R.V. Donner, J. Kurths, Testing time series irreversibility using complex network methods. Europhys. Lett. 102(1), 10004 (2013). doi:10.1209/0295-5075/102/10004

    Google Scholar 

  20. J.F. Donges, J. Heitzig, J. Runge, H.C.H. Schultz, M. Wiedermann, A. Zech, J. Feldhoff, A. Rheinwalt, H. Kutza, A. Radebach, et al.: Advanced functional network analysis in the geosciences: the pyunicorn package. Geophys. Res. Abstr. 15, 3558 (2013)

    Google Scholar 

  21. R.V. Donner, J.F. Donges, Visibility graph analysis of geophysical time series: potentials and possible pitfalls. Acta Geophysica 60(3), 589–623 (2012). doi:10.2478/s11600-012-0032-x

    ADS  Google Scholar 

  22. R. Donner, U. Hinrichs, B. Scholz-Reiter, Symbolic recurrence plots: a new quantitative framework for performance analysis of manufacturing networks. Eur. Phys. J. Spec. Top. 164, 85–104 (2008). doi:10.1140/epjst/e2008-00836-2

    Google Scholar 

  23. R.V. Donner, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Recurrence-based evolving networks for time series analysis of complex systems, in Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA 2010) (2010), pp. 87–90

    Google Scholar 

  24. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Ambiguities in recurrence-based complex network representations of time series. Phys. Rev. E 81(1), 015101(R) (2010). doi:10.1103/PhysRevE.81.015101

  25. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Recurrence networks: a novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010). doi:10.1088/1367-2630/12/3/033025

    Google Scholar 

  26. R.V. Donner, J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of chaotic dynamics: a complex network perspective. Eur. Phys. J. B 84(4), 653–672 (2011). doi:10.1140/epjb/e2011-10899-1

    ADS  MathSciNet  Google Scholar 

  27. R.V. Donner, M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurcat. Chaos 21(4), 1019–1046 (2011). doi:10.1142/S0218127411029021

    MATH  MathSciNet  Google Scholar 

  28. N. Du, B. Wang, B. Wu, Y. Wang, Overlapping community detection in bipartite networks, in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 01 (IEEE Computer Society, Washington, DC, 2008), pp. 176–179. doi:10.1109/WIIAT.2008.98

    Google Scholar 

  29. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985). doi:10.1103/RevModPhys.57.617

    ADS  MATH  MathSciNet  Google Scholar 

  30. J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett.4(9), 973–977 (1987). doi:10.1209/0295-5075/4/9/004

    ADS  Google Scholar 

  31. P. Faure, H. Korn, A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals. Physica D 122(1–4), 265–279 (1998). doi:10.1016/S0167-2789(98)00177-8

    ADS  Google Scholar 

  32. P. Faure, A. Lesne, Recurrence plots for symbolic sequences. Int. J. Bifurcat. Chaos 20(6), 1731–1749 (2010). doi:10.1142/S0218127410026794

    MathSciNet  Google Scholar 

  33. J. Feldhoff, Multivariate extensions of recurrence network analysis. Master’s thesis, Humboldt University, Berlin (2011)

    Google Scholar 

  34. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric detection of coupling directions by means of inter-system recurrence networks. Phys. Lett. A 376(46), 3504–3513 (2012). doi:10.1016/j.physleta.2012.10.008

    ADS  Google Scholar 

  35. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric signature of complex synchronisation scenarios. Europhys. Lett. 102(3), 30007 (2013). doi:10.1209/0295-5075/102/30007

    Google Scholar 

  36. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). doi:10.1016/j.physrep.2009.11.002

    ADS  MathSciNet  Google Scholar 

  37. A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986). doi:10.1103/PhysRevA.33.1134

    ADS  MATH  MathSciNet  Google Scholar 

  38. Z. Gao, N. Jin, Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks. Phys. Rev. E 79(6), 066303 (2009). doi:10.1103/PhysRevE.79.066303

    Google Scholar 

  39. Z.K. Gao, N.D. Jin, W.X. Wang, Y.C. Lai, Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features. Phys. Rev. E 82, 016210 (2010). doi:10.1103/PhysRevE.82.016210

    ADS  Google Scholar 

  40. Z.K. Gao, X.W. Zhang, M. Du, D.D. Jin, Recurrence network analysis of experimental signals from bubbly oil-in-water flows. Phys. Lett. A 377, 457–462 (2013). doi:10.1016/j.physleta.2012.12.017

    ADS  Google Scholar 

  41. Z.K. Gao, X.W. Zhang, D.D. Jin, R. Donner, N. Marwan, J. Kurths, Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows. Europhys. Lett. 103(5), 50004 (2013). doi:10.1209/0295-5075/103/50004

    Google Scholar 

  42. P. Grassberger, Generalized dimensions of strange attractors. Phys. Lett. A 97(6), 227–230 (1983). doi:10.1016/0375-9601(83)90753-3

    ADS  MathSciNet  Google Scholar 

  43. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983). doi:10.1103/PhysRevLett.50.346

    ADS  MathSciNet  Google Scholar 

  44. J.L. Guillaume, M. Latapy, Bipartite structure of all complex networks. Inf. Process. Lett. 90(5), 215–221 (2004). doi:10.1016/j.ipl.2004.03.007

    MATH  MathSciNet  Google Scholar 

  45. J.L. Guillaume, M. Latapy, Bipartite graphs as models of complex networks. Physica A 371(2), 795–813 (2006). doi:10.1016/j.physa.2006.04.047

    ADS  Google Scholar 

  46. R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Module identification in bipartite and directed networks. Phys. Rev. E 76(3), 036102 (2007). doi:10.1103/PhysRevE.76.036102

    Google Scholar 

  47. C. Herrmann, M. Barthélemy, P. Provero, Connectivity distribution of spatial networks. Phys. Rev. E 68(2), 026128 (2003). doi:10.1103/PhysRevE.68.026128

    Google Scholar 

  48. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  49. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992). doi:10.1103/PhysRevA.45.3403

    ADS  Google Scholar 

  50. M. Kitsak, D. Krioukov, Hidden variables in bipartite networks. Phys. Rev. E 84, 026114 (2011). doi:10.1103/PhysRevE.84.026114

    ADS  Google Scholar 

  51. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuno, From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. USA 105(13), 4972–4975 (2008). doi:10.1073/pnas.0709247105

    ADS  MATH  MathSciNet  Google Scholar 

  52. L. Lacasa, B. Luque, J. Luque, J.C. Nuno, The visibility graph: a new method for estimating the Hurst exponent of fractional Brownian motion. Europhys. Lett. 86(3), 30001 (2009). doi:10.1209/0295-5075/86/30001

    Google Scholar 

  53. L. Lacasa, A. Nuñez, E. Roldán, J.M.R. Parrondo, B. Luque, Time series irreversibility: a visibility graph approach. Eur. Phys. J. B 85, 217 (2012). doi:10.1040/epjb/e2012-20809-8

    ADS  Google Scholar 

  54. H. Lange, S. Böse, Recurrence quantification and recurrence network analysis of global photosynthetic activity, in Recurrence Quantification Analysis: Theory and Best Practices, ed. by C.L. Webber, N. Marwan (Springer, Berlin, 2014, Chap. 12 of this volume)

    Google Scholar 

  55. D.P. Lathrop, E.J. Kostelich, Characterization of an experimental strange attractor by periodic-orbits. Phys. Rev. A 40(7), 4028–4031 (1989). doi:10.1103/PhysRevA.40.4028

    ADS  MathSciNet  Google Scholar 

  56. S. Lehmann, M. Schwartz, L.K. Hansen, Biclique communities. Phys. Rev. E 78(1), 016108 (2008). doi:10.1103/PhysRevE.78.016108

    MathSciNet  Google Scholar 

  57. Y. Li, H. Cao, Y. Tan, A comparison of two methods for modeling large-scale data from time series as complex networks. AIP Adv. 1, 012103 (2011). doi:10.1063/1.3556121

    ADS  Google Scholar 

  58. Y. Li, H. Cao, Y. Tan, Novel method of identifying time series based on network graphs. Complexity 17, 13–34 (2011). doi:10.1002/cplx.20384

    Google Scholar 

  59. X. Li, D. Yang, X. Liu, X.M. Wu, Bridging time series dynamics and complex network theory with application to electrocardiogram analysis. IEEE Circuits Syst. Mag. 12(4), 33–46 (2012). doi:10.1109/MCAS.2012.2221521

    Google Scholar 

  60. P.G. Lind, M.C. González, H.J. Herrmann, Cycles and clustering in bipartite networks. Phys. Rev. E 72(5), 056127 (2005). doi:10.1103/PhysRevE.72.056127

    Google Scholar 

  61. C. Liu, W.X. Zhou, Superfamily classification of nonstationary time series based on DFA scaling exponents. J. Phys. A 43, 495005 (2009). doi:10.1088/1751-8113/43/49/495005

    Google Scholar 

  62. B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80(4), 046103 (2009). doi:10.1103/PhysRevE.80.046103

    Google Scholar 

  63. N. Marwan, J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(56), 299–307 (2002). doi:10.1016/S0375-9601(02)01170-2

    ADS  MATH  MathSciNet  Google Scholar 

  64. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002). doi:10.1103/PhysRevE.66.026702

    Google Scholar 

  65. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007). doi:10.1016/j.physrep.2006.11.001

    ADS  MathSciNet  Google Scholar 

  66. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Complex network approach for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009). doi:10.1016/j.physleta.2009.09.042

    ADS  MATH  Google Scholar 

  67. N. Marwan, N. Wessel, J. Kurths, Recurrence based complex network analysis of cardiovascular variability data to predict pre-eclampsia, in Proceedings of Biosignals 2010, 2010, 022

    Google Scholar 

  68. S. Milgram, Small-world problem. Psychol. Today 1(1), 61–67 (1967)

    MathSciNet  Google Scholar 

  69. T. Murata, Detecting communities from bipartite networks based on bipartite modularities, in Proceedings of the 2009 International Conference on Computational Science and Engineering, vol. 04 (IEEE Computer Society, Washington, DC, 2009), pp. 50–57. doi:10.1109/CSE.2009.81

    Google Scholar 

  70. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). doi:10.1137/S003614450342480

    ADS  MATH  MathSciNet  Google Scholar 

  71. M.E.J. Newman, Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330 (2004). doi:10.1140/epjb/e2004-00124-y

    ADS  Google Scholar 

  72. X.H. Ni, Z.Q. Jiang, W.X. Zhou, Degree distributions of the visibility graphs mapped from fractional Brownian motions and multifractal random walks. Phys. Lett. A 373(42), 3822–3826 (2009). doi:10.1016/j.physleta.2009.08.041

    ADS  MATH  Google Scholar 

  73. G. Nicolis, A. García Cantú, C. Nicolis, Dynamical aspects of interaction networks. Int. J. Bifurcat. Chaos 15(11), 3467–3480 (2005). doi:10.1142/S0218127405014167

    MATH  Google Scholar 

  74. E.M. Oblow, Supertracks, supertrack functions and chaos in the quadratic map. Phys. Lett. A 128(8), 406–412 (1988). doi:10.1016/0375-9601(88)90119-3

    ADS  MathSciNet  Google Scholar 

  75. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  76. M. Paluš, Testing for nonlinearity using redundancies: quantitative and qualitative aspects. Physica D 80, 186–205 (1995). doi:10.1016/0167-2789(95)90079-9

    ADS  MATH  Google Scholar 

  77. M. Penrose, Random Geometric Graphs, (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  78. D. Prichard, J. Theiler, Generalized redundancies for time series analysis. Physica D 84, 476–493 (1995). doi:10.1016/0167-2789(95)00041-2

    ADS  Google Scholar 

  79. G. Ramírez Ávila, A. Gapelyuk, N. Marwan, T. Walther, H. Stepan, J. Kurths, N. Wessel, Classification of cardiovascular time series based on different coupling structures using recurrence networks analysis. Phil. Trans. P. Soc. A 371, 20110623 (2013). doi:10.1098/rsta.2011.0623

    ADS  Google Scholar 

  80. G. Ramírez Ávila, A. Gapelyuk, N. Marwan, H. Stepan, J. Kurths, T. Walther, N. Wessel, Classifying healthy women and preeclamptic patients from cardiovascular data using recurrence and complex network methods. Autonom. Neurosci. 178(1–2), 103–110 (2013). doi:10.1016/j.autneu.2013.05.003

    Google Scholar 

  81. K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths, Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Clim. Dyn. 41(1), 3–19 (2013). doi:10.1007/s00382-012-1448-3

    Google Scholar 

  82. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A 330(3–4), 214–223 (2004). doi:10.1016/j.physleta.2004.07.066

    ADS  MATH  MathSciNet  Google Scholar 

  83. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J.L. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71(3), 466–472 (2005). doi:10.1209/epl/i2005-10095-1

    ADS  Google Scholar 

  84. M.C. Romano, M. Thiel, J. Kurths, C. Grebogi, Estimation of the direction of the coupling by conditional probabilities of recurrence. Phys. Rev. E 76(3), 036211 (2007). doi:10.1103/PhysRevE.76.036211

    MathSciNet  Google Scholar 

  85. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchronization: twin surrogates revisited. Chaos 19(1), 015108 (2009). doi:10.1063/1.3072784

    MathSciNet  Google Scholar 

  86. O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976). doi:10.1016/0375-9601(76)90101-8

    ADS  Google Scholar 

  87. E.N. Sawardecker, C.A. Amundsen, M. Sales-Pardo, L.A.N. Amaral, Comparison of methods for the detection of node group membership in bipartite networks. Eur. Phys. J. B 72, 671–677 (2009). doi:10.1140/epjb/e2009-00397-6

    ADS  MATH  Google Scholar 

  88. Y. Shimada, T. Kimura, T. Ikeguchi, Analysis of chaotic dynamics using measures of the complex network theory, in Artificial Neural Networks - ICANN 2008, Pt. I, ed. by V. Kurkova, R. Neruda, J. Koutnik. Lecture Notes in Computer Science, vol. 5163, (Springer, New York, 2008), pp. 61–70

    Google Scholar 

  89. M. Small, J. Zhang, X. Xu, Transforming time series into complex networks, in Complex Sciences. First International Conference, Complex 2009, Shanghai, China, February 2009, ed. by J. Zhou. Revised Papers, Part 2. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 5, (Springer, Berlin, 2009), pp. 2078–2089. doi:10.1007/978-3-642-02469-6_84

  90. N.P. Subramaniyam, J. Hyttinen, Analysis of nonlinear dynamics of healthy and epileptic eeg signals using recurrence based complex network approach, in Proceedings of the 6th International IEEE EMBS Conference on Neural Engineering, 2013, pp. 605–608. doi:10.1109/NER.2013.6696007

  91. K. Suzuki, K. Wakita, Extracting multi-facet community structure from bipartite networks, in Proceedings of the 2009 International Conference on Computational Science and Engineering, vol. 04 (IEEE Computer Society, Washington, DC, 2009), pp. 312–319. doi:10.1109/CSE.2009.451

    Google Scholar 

  92. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Warwick 1980, ed. by D.A. Rand, L.S. Young. Lecture Notes in Mathematics, vol. 898, (Springer, New York, 1981), pp. 366–381. doi:10.1007/BFb0091924

  93. M. Thiel, M.C. Romano, P.L. Read, J. Kurths, Estimation of dynamical invariants without embedding by recurrence plots. Chaos 14(2), 234–243 (2004). doi:10.1063/1.1667633

    ADS  MATH  MathSciNet  Google Scholar 

  94. M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, R. Kliegl, Twin surrogates to test for complex synchronisation. Europhys. Lett. 75(4), 535–541 (2006). doi:10.1209/epl/i2006-10147-0

    ADS  Google Scholar 

  95. L.L. Trulla, A. Giuliani, J.P. Zbilut, C.L. Webber Jr., Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223(4), 255–260 (1996). doi:10.1016/S0375-9601(96)00741-4

    ADS  MATH  MathSciNet  Google Scholar 

  96. A.A. Tsonis, P.J. Roebber, The architecture of the climate network. Physica A 333, 497–504 (2004). doi:10.1016/j.physa.2003.10.045

    ADS  Google Scholar 

  97. D.J. Watts, S.H. Strogatz, Collective dynamics of “small-world” networks. Nature 393(6684), 440–442 (1998). doi:10.1038/30918

    ADS  Google Scholar 

  98. M. Wickramasinghe, I.Z. Kiss, Effect of temperature on precision of chaotic oscillations in nickel electrodissolution. Chaos 20(2), 023125 (2010). doi:10.1063/1.3439209

    Google Scholar 

  99. M. Wiedermann, J.F. Donges, J. Heitzig, J. Kurths, Node-weighted interacting network measures improve the representation of real-world complex systems. Europhys. Lett. 102(2), 28007 (2013). doi:10.1209/0295-5075/102/28007

    Google Scholar 

  100. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985). doi:10.1016/0167-2789(85)90011-9

    ADS  MATH  MathSciNet  Google Scholar 

  101. X. Xu, J. Zhang, M. Small, Superfamily phenomena and motifs of networks induced from time series. Proc. Natl. Acad. Sci. USA 105(50), 19601–19605 (2008). doi:10.1073/pnas.0806082105

    ADS  MATH  MathSciNet  Google Scholar 

  102. Y. Yang, H. Yang, Complex network-based time series analysis. Physica A 387(5–6), 1381–1386 (2008). doi:10.1016/j.physa.2007.10.055

    ADS  Google Scholar 

  103. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992). doi:10.1016/0375-9601(92)90426-M

    ADS  Google Scholar 

  104. J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. A 246(12), 122–128 (1998). doi:10.1016/S0375-9601(98)00457-5

    ADS  Google Scholar 

  105. J. Zhang, M. Small, Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96(23), 238701 (2006). doi:10.1103/PhysRevLett.96.238701

    ADS  Google Scholar 

  106. P. Zhang, J. Wang, X. Li, M. Li, Z. Di, Y. Fan, Clustering coefficient and community structure of bipartite networks. Physica A 387(27), 6869–6875 (2008). doi:10.1016/j.physa.2008.09.006

    ADS  Google Scholar 

  107. C. Zhou, L. Zemanova, G. Zamora, C.C. Hilgetag, J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97(23), 238103 (2006). doi:10.1103/PhysRevLett.97.238103

    Google Scholar 

  108. C. Zhou, L. Zemanova, G. Zamora-Lopez, C.C. Hilgetag, J. Kurths, Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys. 9(6), 178 (2007). doi:10.1088/1367-2630/9/6/178

    Google Scholar 

  109. Y. Zou, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Identifying shrimps in continuous dynamical systems using recurrence-based methods. Chaos 20(4), 043130 (2010). doi:10.1063/1.3523304

    Google Scholar 

  110. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect coupling by means of recurrences. Int. J. Bifurcat. Chaos 21(4), 1099–1111 (2011). doi:10.1142/S0218127411029033

    MATH  MathSciNet  Google Scholar 

  111. Y. Zou, R.V. Donner, J. Kurths, Geometric and dynamic perspectives on phase-coherent and noncoherent chaos. Chaos 22(1), 013115 (2012). doi:10.1063/1.3677367

    Google Scholar 

  112. Y. Zou, R.V. Donner, M. Wickramasinghe, I.Z. Kiss, M. Small, J. Kurths, Phase coherence and attractor geometry of chaotic electrochemical oscillators. Chaos 22(3), 033130 (2012). doi:10.1063/1.4747707

    Google Scholar 

  113. Y. Zou, J. Heitzig, R.V. Donner, J.F. Donges, J.D. Farmer, R. Meucci, S. Euzzor, N. Marwan, J. Kurths, Power-laws in recurrence networks from dynamical systems. Europhys. Lett. 98(4), 48001 (2012). doi:10.1209/0295-5075/98/48001

    Google Scholar 

Download references

Acknowledgements

The reported development of the recurrence network framework has been a community effort. Among other colleagues, we particularly acknowledge important contributions by Jobst Heitzig and Norbert Marwan, as well as multiple inspiring discussions with Jürgen Kurths. Financial support of this work has been granted by the German Federal Environmental Agency, the European Union Seventh Framework Program, the Max Planck Society, the Stordalen Foundation, the German Research Association via the IRTG 1740 “Dynamical phenomena in complex networks”, the National Natural Science Foundation of China (Grant No. 11305062, 11135001), and the German Federal Ministry for Science and Education (project CoSy-CC2, grant no. 01LN1306A). Numerical codes used for estimating recurrence network properties can be found in the software package pyunicorn [20], which is available at http://tocsy.pik-potsdam.de/pyunicorn.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reik V. Donner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Donner, R.V., Donges, J.F., Zou, Y., Feldhoff, J.H. (2015). Complex Network Analysis of Recurrences. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_4

Download citation

Publish with us

Policies and ethics