Skip to main content

Fucoidan, A Sulfated Polysaccharides from Brown Algae as Therapeutic Target for Cancer

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

Cancer is most common in worldwide and badly threaten to human’s life. Unfortunately drugs, which are used for cancer therapy, are toxic and affect not only cancer cells but also normal cells and tissues. At last decade marine brown algae attract much attention because they represent a rich and easily regenerated source of polysaccharides with various structures and biological activities. Fucoidan sulfated polysaccharides (FCSPs) extracted from seaweeds, mainly brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, the mechanism of cell death depends on the magnitude of DNA damage following exposure to anticancer agents. Apoptosis is mainly regulated by cell growth signaling molecules. Fucoidan was shown to induce cytotoxicity of various cancer cells, induces apoptosis, and inhibits invasion, metastasis and angiogenesis of cancer cells. Hence, this chapter deals the potential role of fucoidan on cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costantino V, Fattorusso E, Menna M, Taglialatela-Scafati O (2004) Chemical diversity of bioactive marine natural products: an illustrative case study. Curr Med Chem 11(13):1671–1692

    CAS  Google Scholar 

  2. Chandini SK, Ganesan P, Suresh P, Bhaskar N (2008) Seaweeds as a source of nutritionally beneficial compounds—a review. J Food Sci Technol 45(1):1–13

    Google Scholar 

  3. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23(3):543–597

    CAS  Google Scholar 

  4. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33(5):325–337

    CAS  Google Scholar 

  5. Iso H, Kubota Y (2007) Nutrition and disease in the Japan collaborative cohort study for evaluation of cancer (JACC). Asia Pac J Cancer Prev 8:35–80

    Google Scholar 

  6. Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. Jpn Agric Res Q 35(4):281–290

    Google Scholar 

  7. McHugh DJ (1987) Production, properties and uses of alginates. Production and utilization of products from commercial seaweeds 288 (FAO Fisheries Technical Paper), pp 58–115

    Google Scholar 

  8. Tseng C (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13(4):375–380

    Google Scholar 

  9. Jensen A (1956) Component sugars of some common brown algae. Akademisk Trykningssentral, Blindern, Oslo. Report 9, Norwegian Institute of Seaweed Research

    Google Scholar 

  10. Patel S (2012) Therapeutic importance of sulfated polysaccharides from seaweeds: updating the recent findings. 3 Biotech 2:1–15

    Google Scholar 

  11. Skriptsova AV, Shevchenko NM, Zvyagintseva TN, Imbs TI (2010) Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). J Appl Phycol 22(1):79–86

    CAS  Google Scholar 

  12. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9(2):196–223

    CAS  Google Scholar 

  13. Kylin H (1913) Zur Biochemie der Meeresalgen. Hoppe-Seyler’s Z Physiologische Chem 83(3):171–197

    CAS  Google Scholar 

  14. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13(6):29–40

    Google Scholar 

  15. Matsubara K, Xue C, Zhao X, Mori M, Sugawara T, Hirata T (2005) Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells. Int J Mol Med 15(4):695–700

    CAS  Google Scholar 

  16. Vishchuk OS, Ermakova SP, Zvyagintseva TN (2013) The fucoidans from brown algae of Far-Eastern seas: anti-tumor activity and structure-function relationship. Food Chem 141(2):1211–1217

    CAS  Google Scholar 

  17. Cole CL, Jayson GC (2008) Oligosaccharides as anti-angiogenic agents. Expert Opin Biol Ther 8(3):351–362

    CAS  Google Scholar 

  18. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, London, p 219

    Google Scholar 

  19. Patankar MS, Oehninger S, Barnett T, Williams R, Clark G (1993) A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268(29):21770–21776

    CAS  Google Scholar 

  20. Bilan MI, Usov AI (2009) Structural analysis of fucoidans. ChemInform 40:34

    Google Scholar 

  21. Duarte ME, Cardoso MA, Noseda MD, Cerezo AS (2001) Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res 333(4):281–293

    CAS  Google Scholar 

  22. Tako M, Yoza E, Tohma S (2000) Chemical characterization of acetyl fucoidan and alginate from commercially cultured Cladosiphon okamuranus. Botanica Mar 43(4):393–398

    CAS  Google Scholar 

  23. Ale MT, Mikkelsen JD, Meyer AS (2012) Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp. J Appl Phycol 24(4):715–723

    CAS  Google Scholar 

  24. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, Kizaki M (2005) Fucoidan induces apoptosis of human HS Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 78(1):7–14

    CAS  Google Scholar 

  25. Riou D, Colliec-Jouault S, Pinczon dSD, Bosch S, Siavoshian S, Le Bert V, Tomasoni C, Sinquin C, Durand P, Roussakis C (1996) Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res 16(3A):1213

    CAS  Google Scholar 

  26. Yamamoto I, Takahashi M, Suzuki T, Seino H, Mori H (1984) Antitumor effect of seaweeds. IV. Enhancement of antitumor activity by sulfation of a crude fucoidan fraction from Sargassum kjellmanianum. Jpn J Exp Med 54(4):143–151

    CAS  Google Scholar 

  27. Itoh H, Noda H, Amano H, Ito H (1995) Immunological analysis of inhibition of lung metastases by fucoidan (GIV-A) prepared from brown seaweed Sargassum thunbergii. Anticancer Res 15(5B):1937

    CAS  Google Scholar 

  28. Haneji K, Matsuda T, Tomita M, Kawakami H, Ohshiro K, Uchihara J-N, Masuda M, Takasu N, Tanaka Y, Ohta T (2005) Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Nutr Cancer 52(2):189–201

    CAS  Google Scholar 

  29. Vishchuk OS, Ermakova SP, Zvyagintseva TN (2011) Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics and antitumor activity. Carbohydr Res 346(17):2769–2776

    CAS  Google Scholar 

  30. Anastyuk SD, Imbs TI, Shevchenko NM, Dmitrenok PS, Zvyagintseva TN (2012) Compositional and structural mass spectrometric analysis of fucoidan preparations from Costaria costata, extracted from alga at different life-stages. Carbohydr Polym 90:993–1002

    CAS  Google Scholar 

  31. Anastyuk SD, Shevchenko NM, Nazarenko EL, Imbs TI, Gorbach VI, Dmitrenok PS, Zvyagintseva TN (2010) Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry. Carbohydr Res 345(15):2206–2212

    CAS  Google Scholar 

  32. Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI (2002) Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydr Res 337(8):719–730

    CAS  Google Scholar 

  33. Synytsya A, Kim W-J, Kim S-M, Pohl R, Synytsya A, Kvasnička F, Čopíková J, Il Park Y (2010) Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 81(1):41–48

    CAS  Google Scholar 

  34. Fitton J (2005) Fucoidans: healthful saccharides from the sea. Cancer 19(20):21–22

    Google Scholar 

  35. Holtkamp AD, Kelly S, Ulber R, Lang S (2009) Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 82(1):1–11

    CAS  Google Scholar 

  36. Qiu X, Amarasekara A, Doctor V (2006) Effect of oversulfation on the chemical and biological properties of fucoidan. Carbohydr Polym 63(2):224–228

    CAS  Google Scholar 

  37. Alekseyenko T, Zhanayeva SY, Venediktova A, Zvyagintseva T, Kuznetsova T, Besednova N, Korolenko T (2007) Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bull Exp Biol Med 143(6):730–732

    CAS  Google Scholar 

  38. Maruyama H, Tamauchi H, Iizuka M, Nakano T (2006) The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifidasporophylls (Mekabu). Planta Med 72(15):1415

    CAS  Google Scholar 

  39. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS (2011) Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 49(3):331–336

    CAS  Google Scholar 

  40. Makarenkova I, Deriabin P, L’vov D, Zviagintseva T, Besednova N (2010) Antiviral activity of sulfated polysaccharide from the brown algae Laminaria japonica against avian influenza A (H5N1) virus infection in the cultured cells. Vopr Virusol 55(1):41

    CAS  Google Scholar 

  41. Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D (2010) Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res 125(5):419–426

    CAS  Google Scholar 

  42. Semenov A, Mazurov A, Preobrazhenskaia M, Ushakova N, Mikhaĭlov V, Berman A, Usov A, Nifant’ev N, Bovin N (1998) Sulfated polysaccharides as inhibitors of receptor activity of P-selectin and P-selectin-dependent inflammation. Vopr MeditÍsinskoĭ Khimii 44(2):135

    CAS  Google Scholar 

  43. Wang J, Zhang Q, Zhang Z, Song H, Li P (2010) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int J Biol Macromol 46(1):6–12

    CAS  Google Scholar 

  44. Veena CK, Josephine A, Preetha SP, Varalakshmi P, Sundarapandiyan R (2006) Renal peroxidative changes mediated by oxalate: the protective role of fucoidan. Life Sci 79(19):1789–1795

    CAS  Google Scholar 

  45. Hayakawa K, Nagamine T (2009) Effect of fucoidan on the biotinidase kinetics in human hepatocellular carcinoma. Anticancer Res 29(4):1211–1217

    CAS  Google Scholar 

  46. Zhang Q, Li N, Zhao T, Qi H, Xu Z, Li Z (2005) Fucoidan inhibits the development of proteinuria in active Heymann nephritis. Phytother Res 19(1):50–53

    CAS  Google Scholar 

  47. Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330(4):529–535

    CAS  Google Scholar 

  48. Zhuang C, Itoh H, Mizuno T, Ito H (1995) Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci Biotechnol Biochem 59(4):563

    CAS  Google Scholar 

  49. Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res Off J Ital Pharmacol Soc 48(2):151

    CAS  Google Scholar 

  50. Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17(6):527–534

    CAS  Google Scholar 

  51. Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50(4):840–845

    Google Scholar 

  52. Xue C, Chen L, Li Z, Cai Y, Lin H, Fang Y (2004) Antioxidative activities of low molecular fucoidans from kelp Laminaria japonica. Dev Food Sci 42:139–145

    CAS  Google Scholar 

  53. Hu JF, Geng MY, Zhang JT, Jiang HD (2001) An in vitro study of the structure-activity relationships of sulfated polysaccharide from brown algae to its antioxidant effect. J Asian Nat Prod Res 3(4):353–358

    CAS  Google Scholar 

  54. Wang J, Zhang Q, Zhang Z, Li Z (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42(2):127–132

    Google Scholar 

  55. Usov A, Smirnova G, Klochkova N (2001) Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ J Bioorg Chem 27(6):395–399

    CAS  Google Scholar 

  56. Hayashi L, Yokoya NS, Ostini S, Pereira RT, Braga ES, Oliveira EC (2008) Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture 277(3):185–191

    CAS  Google Scholar 

  57. Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir Chem Chemother 18(3):153–162 (Institutional Subscription)

    CAS  Google Scholar 

  58. Colliec‐Jouault S, Millet J, Helley D, Sinquin C, Fischer A (2003) Effect of low molecular weight fucoidan on experimental arterial thrombosis in the rabbit and rat. J Thromb Haemost 1(5):1114–1115

    Google Scholar 

  59. Millet J, Jouault SC, Mauray S, Theveniaux J, Sternberg C, Vidal CB, Fischer A (1999) Antithrombotic and anticoagulant activities of a low molecular weight fucoidan by the subcutaneous route. Thromb Haemost-Stuttg 81:391–395

    CAS  Google Scholar 

  60. Durand E, Helley D, Al Haj Zen A, Dujols C, Bruneval P, Colliec-Jouault S, Fischer A-M, Lafont A (2008) Effect of low molecular weight fucoidan and low molecular weight heparin in a rabbit model of arterial thrombosis. J Vasc Res 45(6):529–537

    CAS  Google Scholar 

  61. Giraux J-L, Tapon-Bretaudière J, Matou S, Fischer A-M (1998) Fucoidan, as heparin, induces tissue factor pathway inhibitor release from cultured human endothelial cells. Thromb Haemost-Stuttg 80:692–695

    CAS  Google Scholar 

  62. Zemani F, Benisvy D, Galy-Fauroux I, Lokajczyk A, Colliec-Jouault S, Uzan G, Fischer AM, Boisson-Vidal C (2005) Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells. Biochem Pharmacol 70(8):1167–1175

    CAS  Google Scholar 

  63. Sweeney EA, Priestley GV, Nakamoto B, Collins RG, Beaudet AL, Papayannopoulou T (2000) Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Nat Acad Sci 97(12):6544–6549

    CAS  Google Scholar 

  64. Zemani F, Silvestre J-S, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C (2008) Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol 28(4):644–650

    CAS  Google Scholar 

  65. Changotade S, Korb G, Bassil J, Barroukh B, Willig C, Colliec Jouault S, Durand P, Godeau G, Senni K (2008) Potential effects of a low molecular weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties. J Biomed Mater Res A 87(3):666–675

    Google Scholar 

  66. Haroun-Bouhedja F, Ellouali M, Sinquin C, Boisson-Vidal C (2000) Relationship between sulfate groups and biological activities of fucans. Thromb Res 100(5):453–459

    CAS  Google Scholar 

  67. Nishino T, Nagumo T (1991) The sulfate-content dependence of the anticoagulant activity of a fucan sulfate from the brown seaweed Ecklonia kurome. Carbohydr Res 214(1):193–197

    CAS  Google Scholar 

  68. Fukuta K, Nakamura T (2008) Induction of hepatocyte growth factor by fucoidan and fucoidan derived oligosaccharides. J Pharm Pharmacol 60(4):499–503

    CAS  Google Scholar 

  69. Huang L, Wen K, Gao X, Liu Y (2010) Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Pharm Biol 48(4):422–426

    CAS  Google Scholar 

  70. Verdrengh M, Erlandsson Harris H, Tarkowski A (2000) Role of selectins in experimental Staphylococcus aureus induced arthritis. Eur J Immunol 30(6):1606–1613

    CAS  Google Scholar 

  71. Nasu T, Fukuda Y, Nagahira K, Kawashima H, Noguchi C, Nakanishi T (1997) Fucoidin, a potent inhibitor of L-selectin function, reduces contact hypersensitivity reaction in mice. Immunol Lett 59(1):47–51

    CAS  Google Scholar 

  72. Granert C, Raud J, Waage A, Lindquist L (1999) Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. Infect Immun 67(5):2071–2074

    CAS  Google Scholar 

  73. Ostergaard C, Yieng-Kow R, Benfield T, Frimodt-Møller N, Espersen F, Lundgren J (2000) Inhibition of leukocyte entry into the brain by the selectin blocker fucoidin decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental Pneumococcal meningitis in rabbits. Infect Immun 68(6):3153

    CAS  Google Scholar 

  74. Jeong H-S, Venkatesan J, Kim S-K (2013) Hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int J Biol Macromol 57:138–141

    CAS  Google Scholar 

  75. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Google Scholar 

  76. Schneider U, Stipper A, Besserer J (2010) Dose-response relationship for lung cancer induction at radiotherapy dose. Z Med Phys 20(3):206–214

    Google Scholar 

  77. Grossi F, Kubota K, Cappuzzo F, de Marinis F, Gridelli C, Aita M, Douillard J-Y (2010) Future scenarios for the treatment of advanced non-small cell lung cancer: focus on taxane-containing regimens. Oncologist 15(10):1102–1112

    CAS  Google Scholar 

  78. Ermakova S, Sokolova R, Kim S-M, Um B-H, Isakov V, Zvyagintseva T (2011) Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity. Appl Biochem Biotechnol 164(6):841–850

    CAS  Google Scholar 

  79. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17(5):541–552

    CAS  Google Scholar 

  80. Teruya T, Konishi T, Uechi S, Tamaki H, Tako M (2007) Anti-proliferative activity of oversulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937 cells. Int J Biol Macromol 41(3):221–226

    CAS  Google Scholar 

  81. Boo H-J, Hong J-Y, Kim S-C, Kang J-I, Kim M-K, Kim E-J, Hyun J-W, Koh Y-S, Yoo E-S, Kwon J-M (2013) The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 11(8):2982–2999

    Google Scholar 

  82. Zhang Z, Teruya K, Eto H, Shirahata S (2011) Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways. PLoS One 6(11):1–14

    Google Scholar 

  83. Ye J, Li Y, Teruya K, Katakura Y, Ichikawa A, Eto H, Hosoi M, Hosoi M, Nishimoto S, Shirahata S (2005) Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells. Cytotechnology 47(1–3):117–126

    Google Scholar 

  84. Zhang Z, Teruya K, Eto H, Shirahata S (2013) Induction of apoptosis by low molecular weight fucoidan through calcium and caspase dependent mitochondrial pathways in MDA-MB-231 breast cancer cells. Biosci Biotechnol Biochem 77:235–242

    CAS  Google Scholar 

  85. Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61(1):441–468

    CAS  Google Scholar 

  86. Nagamine T, Hayakawa K, Kusakabe T, Takada H, Nakazato K, Hisanaga E, Iha M (2009) Inhibitory effect of fucoidan on Huh7 hepatoma cells through downregulation of CXCL12. Nutr Cancer 61(3):340–347

    CAS  Google Scholar 

  87. Fukahori S, Yano H, Akiba J, Ogasawara S, Momosaki S, Sanada S, Kuratomi K, Ishizaki Y, Moriya F, Yagi M (2008) Fucoidan, a major component of brown seaweed, prohibits the growth of human cancer cell lines in vitro. Mol Med Rep 1:537–542

    CAS  Google Scholar 

  88. Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11(6):1214–1224

    Google Scholar 

  89. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis—a link between cancer genetics and chemotherapy. Cell 108(2):153–164

    CAS  Google Scholar 

  90. Duprez L, Wirawan E, Berghe TV, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062

    CAS  Google Scholar 

  91. Sprick MR, Walczak H (2004) The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta (BBA—Mol Cell Res) 1644(2):125–132

    CAS  Google Scholar 

  92. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    CAS  Google Scholar 

  93. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27(48):6194–6206

    CAS  Google Scholar 

  94. Eskes R, Desagher S, Antonsson B, Martinou J-C (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20(3):929–935

    CAS  Google Scholar 

  95. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou J-C (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144(5):891–901

    CAS  Google Scholar 

  96. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    CAS  Google Scholar 

  97. Yamasaki-Miyamoto Y, Yamasaki M, Tachibana H, Yamada K (2009) Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells. J Agric Food Chem 57(18):8677–8682

    CAS  Google Scholar 

  98. Liang Y, Yan C, Schor NF (2001) Apoptosis in the absence of caspase 3. Oncogene 20(45):6570

    CAS  Google Scholar 

  99. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53(17):3976–3985

    CAS  Google Scholar 

  100. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13(24):3179

    CAS  Google Scholar 

  101. Kim E, Park S, Lee J-Y, Park J (2010) Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol 10(1):96

    Google Scholar 

  102. Jin JO, Song MG, Kim YN, Park JI, Kwak JY (2010) The mechanism of fucoidan induced apoptosis in leukemic cells: involvement of ERK1/2, JNK, glutathione, and nitric oxide. Mol Carcinog 49(8):771–782

    CAS  Google Scholar 

  103. Martin S, Reutelingsperger C, McGahon AJ, Rader JA, Van Schie R, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    CAS  Google Scholar 

  104. Hyun J-H, Kim S-C, Kang J-I, Kim M-K, Boo H-J, Kwon J-M, Koh Y-S, Hyun J-W, Park D-B, Yoo E-S (2009) Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol Pharm Bull 32(10):1760–1764

    CAS  Google Scholar 

  105. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40

    CAS  Google Scholar 

  106. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23(16):2838–2849

    CAS  Google Scholar 

  107. Smalley KS (2003) A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 104(5):527–532

    CAS  Google Scholar 

  108. Whitmarsh A, Davis R (2007) Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 26(22):3172–3184

    CAS  Google Scholar 

  109. Suthiphongchai T, Promyart P, Virochrut S, Tohtong R, Wilairat P (2003) Involvement of ERK12 in invasiveness and metastatic development of rat prostatic adenocarcinoma. Oncol Res Featur Preclin Clin Cancer Ther 13(5):253–259

    Google Scholar 

  110. Liao D, Wang L, Zhang X, Liu M (2006) Expression and significance of PTEN/PI3K signal transduction-related proteins in non-small cell lung cancer. Ai Zheng Aizheng Chin J Cancer 25(10):1238

    CAS  Google Scholar 

  111. Lee H, Kim J-S, Kim E (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7(11):e50624

    CAS  Google Scholar 

  112. Wu W-S, Wu J-R, Hu C-T (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27(2):303–314

    CAS  Google Scholar 

  113. Busch S, Renaud SJ, Schleussner E, Graham CH, Markert UR (2009) mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3. Exp Cell Res 315(10):1724–1733

    CAS  Google Scholar 

  114. Lee NY, Ermakova SP, Zvyagintseva TN, Kang KW, Dong Z, Choi HS (2008) Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 Cl41 cells. Food Chem Toxicol 46(5):1793–1800

    CAS  Google Scholar 

  115. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):131–136

    Google Scholar 

  116. Hsu T-C, Young MR, Cmarik J, Colburn NH (2000) Activator protein 1 (AP-1)—and nuclear factor κB (NF-κB)—dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28(9):1338–1348

    CAS  Google Scholar 

  117. Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y (2009) Suppression of Wnt/β-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602(1):8–14

    CAS  Google Scholar 

  118. Lake AC, Vassy R, Di Benedetto M, Lavigne D, Le Visage C, Perret GY, Letourneur D (2006) Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1. J Biol Chem 281(49):37844–37852

    CAS  Google Scholar 

  119. Rouzet F, Bachelet-Violette L, Alsac J-M, Suzuki M, Meulemans A, Louedec L, Petiet A, Jandrot-Perrus M, Chaubet F, Michel J-B (2011) Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation. J Nucl Med 52(9):1433–1440

    CAS  Google Scholar 

  120. Bachelet L, Bertholon I, Lavigne D, Vassy R, Jandrot-Perrus M, Chaubet F, Letourneur D (2009) Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets. Biochim Biophys Acta (BBA)—Gen Subj 1790(2):141–146

    CAS  Google Scholar 

  121. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30

    CAS  Google Scholar 

  122. Klagsbrun M, D’Amore PA (1991) Regulators of angiogenesis. Annu Rev Physiol 53(1):217–239

    CAS  Google Scholar 

  123. Nelson NJ (1998) Inhibitors of angiogenesis enter phase III testing. J Nat Cancer Inst 90(13):960–963

    CAS  Google Scholar 

  124. Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 65(2):173–179

    CAS  Google Scholar 

  125. Arya M, Ahmed H, Silhi N, Williamson M, Patel HR (2007) Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumor Biol 28(3):123–131

    Google Scholar 

  126. Kryczek I, Wei S, Keller E, Liu R, Zou W (2007) Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol-Cell Physiol 292(3):C987–C995

    CAS  Google Scholar 

  127. Lv Y, Song Q, Shao Q, Gao W, Mao H, Lou H, Qu X, Li X (2012) Comparison of the effects of marchantin C and fucoidan on sFlt‐1 and angiogenesis in glioma microenvironment. J Pharm Pharmacol 64(4):604–609

    CAS  Google Scholar 

  128. Liu F, Wang J, Chang AK, Liu B, Yang L, Li Q, Wang P, Zou X (2012) Fucoidan extract derived from Undaria pinnatifida inhibits angiogenesis by human umbilical vein endothelial cells. Phytomedicine 19:797–803

    CAS  Google Scholar 

  129. Hsu H-Y, Lin T-Y, Hwang P-A, Chen R-H, Tsao S-M, Hsu J (2013) Fucoidan induces changes in the epithelial-mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFβ receptor degradation in breast cancer. Carcinogenesis 34:874–884

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Marine Bioprocess Research Center of the Marine Bio 21 Project funded by the Ministry of Land, Transport and Maritime, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kalimuthu, S., Kim, SK. (2015). Fucoidan, A Sulfated Polysaccharides from Brown Algae as Therapeutic Target for Cancer. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_7

Download citation

Publish with us

Policies and ethics