Skip to main content

Marine Sponge Sesterpenoids as Potent Apoptosis-Inducing Factors in Human Carcinoma Cell Lines

  • Chapter
  • First Online:

Abstract

Cancer is a leading cause of death in industrialized countries. Although mortality rates have declined in recent years owing to earlier detection and more options in treatment, most cancers remain incurable. Mutations and epigenetic alterations of cancer genes promote the malignant transformation of cancer progenitor cells by disrupting key processes involved in normal growth control and tissue homeostasis. In addition, tumor development and progression are also dependent on the microenvironment surrounding the malignant cell. Conventional chemotherapy for cancer utilizes cytotoxic agents that elicit their therapeutic effect partly through apoptosis induction. Moreover, overexpression of anti-apoptotic proteins in cancer cells can inhibit programmed cell death and engender chemoresistance. Therefore, chemotherapeutic interventions fail to determine complete health in patients . Conversely, drugs developed more recently, known as ‘targeted therapy’, may show less unwanted toxicity, although they are generally cytostatic. Thus, there is an urgent need to develop new effective drugs. Natural products play a dominant role in the discovery of lead compounds for the development of drugs to treat human diseases. Terpenoids are by far the largest class of natural products. Within this class of compounds, the sesterterpenes form a rare group of isoprenoids, which occur in widely differing source. Particularly, marine organisms have provided a large number of sesterterpenoids , possessing novel carbon skeleton and a wide variety of biological activities. It has been largely reported that the anti-inflammatory activity is the most relevant among the biological activities observed for marine sesterterpenoids. Herein, we describe the link between chronic inflammation and cancer, and the more significant biologically active sesterterpenoids from marine organisms, grouped in a biogenetic sequence. Moreover, natural products that do not contain 25 carbon atoms but are obviously sesterterpene derivatives are also included. The high potential for some of these products suggested that they could be developed as drugs for the treatment of inflammation and cancer-related inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bray F, Ren JS, Masuyer E, Ferlay J (2013) Int J Cancer 132(5):1133–1145

    CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Cell 144:646–674

    CAS  Google Scholar 

  3. Trinchieri G (2012) Annu Rev Immunol 30:677–706

    CAS  Google Scholar 

  4. Pierce GB, Speers WC (1988) Cancer Res 48:1996–2004

    CAS  Google Scholar 

  5. Bissell MJ, Hines WC (2011) Nat Med 17:320–329

    CAS  Google Scholar 

  6. Letai AG (2008) Nat Rev Cancer 8:121–132

    CAS  Google Scholar 

  7. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Nat Rev Cancer 13(10):714–726

    CAS  Google Scholar 

  8. Philip M et al (2004) Semin Cancer Biol 14(6):433–439

    CAS  Google Scholar 

  9. DiDonato JA et al (2012) Immunol Rev 246(1):379–400

    Google Scholar 

  10. Ruzicka L, Eschenmoser A, Heusser H (1953) Experientia 9:357–367

    CAS  Google Scholar 

  11. Nozoe S, Morisaki M, Tsuda K, Iitaka Y, Takahashi N, Tamura S, Ishibashi K, Shirasaka M (1965) J Am Chem Soc 87:4968–4970

    CAS  Google Scholar 

  12. Toyoda M, Asahima M, Fukawa H, Shimizu T (1969) Tetrahedron Lett 10:4879–4882

    Google Scholar 

  13. Veloz R, Quijano L, Calderon JS, Rios T (1975) JCS Chem Comm 1975:191–192

    Google Scholar 

  14. Faulkner DJ (2002) Nat Prod Rep 19:1–48 (And earlier review in the series)

    CAS  Google Scholar 

  15. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Nat Prod Rep 21:1–49 (And earlier review in the series)

    CAS  Google Scholar 

  16. Cimino G, De Stefano S, Minale L (1972) Tetrahedron 28:1315–1324

    CAS  Google Scholar 

  17. McPhail K, Davies-Coleman MT, Coetzee P (1998) J Nat Prod 61:961–964

    CAS  Google Scholar 

  18. Kernan MR, Cambie RC, Bergquist PR (1991) J Nat Prod 54:265–268

    CAS  Google Scholar 

  19. Walker RP, Thompson JE, Faulkner DJ (1980) J Org Chem 45:4976–4979

    CAS  Google Scholar 

  20. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Planta Med 1982:31–34

    Google Scholar 

  21. Crispino A, De Giulio A, De Rosa S, Strazzullo G (1989) J Nat Prod 52:646–648

    CAS  Google Scholar 

  22. Fusetani N, Kato Y, Matsunaga S, Hashimoto K (1984) Tetrahedron Lett 25:4941–4942

    CAS  Google Scholar 

  23. Ikegami S, Kawada K, Kimura Y, Suzuki A (1979) Agric Biol Chem 43:161–166

    CAS  Google Scholar 

  24. De Rosa S, Milone A, De Giulio A, Crispino A, Iodice C (1996) Nat Prod Lett 8:245–251

    CAS  Google Scholar 

  25. Choi HJ, Choi YH, Yee SB, Im E, Jung JH, Kim ND (2005) Mol Carcinog 44:162–73

    CAS  Google Scholar 

  26. Kato Y, Fusetani N, Matsunaga S, Hashimoto K (1985) Chem Lett 1985:1521–1524

    Google Scholar 

  27. Kato Y, Fusetani N, Matsunaga S, Hashimoto K (1986) Experientia 42:1299–1300

    CAS  Google Scholar 

  28. De Rosa S, De Giulio A, Crispino A, Iodice C, Tommonaro G (1997) Nat Prod Lett 10:7–12

    CAS  Google Scholar 

  29. Miyashita K et al (2009) Anticancer Agents Med Chem 9:1114–1122

    CAS  Google Scholar 

  30. Bidon-Chanal A et al (2013) Eur J Med Chem 60:479–89

    CAS  Google Scholar 

  31. Liu Y, Bae BH, Alam N, Hong J, Sim CJ, Lee C-O, Im KS, Jung JH (2001) J Nat Prod 64:1301–1304

    CAS  Google Scholar 

  32. De Rosa S, De Giulio A, Crispino A, Iodice C, Tommonaro G (1997) Nat Prod Lett 10:267–274

    CAS  Google Scholar 

  33. De Stefano D, Tommonaro G, Malik SA, Iodice C, De Rosa S, Maiuri MC, Carnuccio R (2012) PLoS One 7(4):e33031

    CAS  Google Scholar 

  34. Liu Y, Hong J, Lee C-O, Im KS, Kim ND, Choi JS, Jung JH (2002) J Nat Prod 65:1307–1314

    CAS  Google Scholar 

  35. Craig KS, Williams DE, Hollander I, Frommer E, Mallon R, Collins K, Wojciechowicz D, Tahir A, Van Soest R, Andersen RJ (2002) Tetrahedron Lett 43:4801–4804

    CAS  Google Scholar 

  36. Hollander I, Frommer E, Mallon R (2000) Anal Biochem 286:129–137

    CAS  Google Scholar 

  37. Fattorusso E, Minale L, Sodano G, Trivellone E (1971) Tetrahedron 27:3909–3917

    CAS  Google Scholar 

  38. Cimino G, De Stefano S, Minale L, Fattorusso E (1971) Tetrahedron 27:4673–4679

    CAS  Google Scholar 

  39. Cimino G, De Stefano S, Minale L, Fattorusso E (1972) Tetrahedron 28:267–273

    CAS  Google Scholar 

  40. De Giulio A, De Rosa S, Di Vincenzo G, Zavodnik N (1989) J Nat Prod 52:1258–1262

    CAS  Google Scholar 

  41. Barrow CJ, Blunt JW, Munro MHG (1989) J Nat Prod 52:346–359

    CAS  Google Scholar 

  42. De Giulio A, De Rosa S, Di Vincenzo G, Strazzullo G, Zavodnik N (1990) J Nat Prod 53:1503–1507

    CAS  Google Scholar 

  43. Liu Y, Mansoor TA, Hong J, Lee C-O, Sim CJ, Im KS, Kim ND, Jung JH (2003) J Nat Prod 66:1451–1456

    CAS  Google Scholar 

  44. Yanai M, Ohta S, Ohta E, Ikegami S (1998) Tetrahedron 54:15607–15612

    CAS  Google Scholar 

  45. Ohta S, Uno M, Yoshimura M, Hiraga Y, Ikegami S (1996) Tetrahedron Lett 37:2265–2266

    CAS  Google Scholar 

  46. Youssef DTA, Yoshida WY, Kelly M, Scheuer PJ (2001) J Nat Prod 64:1332–1335

    CAS  Google Scholar 

  47. Piao S-J, Zhang H-J, Lu H-Y, Yang F, Jiao W-H, Yi Y-H, Chen W-S, Lin H-W (2011) J Nat Prod 74:1248–1254

    CAS  Google Scholar 

  48. Su J-H, Tseng S-W, Lu M-C, Liu L-L, Chou Y, Sung P-J (2011) J Nat Prod 74:2005–2009

    CAS  Google Scholar 

  49. Pedpradab P, Suwanborirux K (2011) J Asian Nat Prod Res 13:879–883

    CAS  Google Scholar 

  50. Kotoku N, Fujioka S, Nakata C, Yamada M, Sumii Y, Kawachi T, Arai M, Kobayashi M (2011) Tetrahedron 67:6673–6678

    CAS  Google Scholar 

  51. Kobayashi J, Zeng C-M, Ishibashi M, Sasaki T (1993) J Nat Prod 56:436–439

    CAS  Google Scholar 

  52. Tsuda M, Shigemori H, Ishibashi M, Sasaki T, Kobayashi J (1992) J Org Chem 57:3503–3507

    CAS  Google Scholar 

  53. Tsuda M, Endo T, Mikami Y, Fromont J, Kobayashi J (2002) J Nat Prod 65:1507–1508

    CAS  Google Scholar 

  54. Youssef DTA (2004) J Nat Prod 67:112–114

    CAS  Google Scholar 

  55. Issa HH, Tanaka J, Higa T (2003) J Nat Prod 66:251–254

    CAS  Google Scholar 

  56. Lefranc F, Nuzzo G, Hamdy NA, Fakhr I, Moreno Y, Banuls L, Van Goietsenoven G, Villani G, Mathieu V, van Soest R, Kiss R, Ciavatta ML (2013) J Nat Prod 76:1541–1547

    CAS  Google Scholar 

  57. Dai J, Liu Y, Zhou YD, Nagle DG, et al (2007) J Nat Prod 70:130–133

    CAS  Google Scholar 

  58. Charan RD, McKee TC, Boyd MR (2001) J Nat Prod 64:661–663

    CAS  Google Scholar 

  59. Charan RD, McKee TC, Boyd MR (2002) J Nat Prod 65:492–495

    CAS  Google Scholar 

  60. De Rosa S, Crispino A, De Giulio A, Iodice C, Pronzato R, Zavodnik N (1995) J Nat Prod 58:1776–1780

    CAS  Google Scholar 

  61. De Rosa S, Crispino A, De Giulio A, Iodice C, Benrezzouk R, Terencio MC, Ferrándiz ML, Alcaraz MJ, Payá M (1998) J Nat Prod 61:931–935

    CAS  Google Scholar 

  62. De Rosa S, Crispino A, De Giulio A, Iodice C, Amodeo P, Tancredi T (1999) J Nat Prod 62:1316–1318

    Google Scholar 

  63. Demeke D, Forsyth CJ (2003) Org Lett 5:991–994

    CAS  Google Scholar 

  64. De Rosa S, Puliti R, Crispino A, De Giulio A, De Sena C, Iodice C, Mattia CA (1995) Tetrahedron 51:10731–10736

    CAS  Google Scholar 

  65. De Rosa S, Crispino A, De Giulio A, Iodice C, Tommonaro G (1997) J Nat Prod 60:844–846

    CAS  Google Scholar 

  66. Kernan MR, Faulkner DJ (1988) J Org Chem 53:4574–4578

    CAS  Google Scholar 

  67. Makarieva TN, Rho J-R, Lee H-S, Santalova EA, Stonik V, Shin J (2003) J Nat Prod 66:1010–1012

    CAS  Google Scholar 

  68. Musman M, Ohtani II, Nagaoka D, Tanaka J, Higa T (2001) J Nat Prod 64:350–352

    CAS  Google Scholar 

  69. Wright AE, McCarthy PJ, Schulte GE (1989) J Org Chem 54:3472–3474

    CAS  Google Scholar 

  70. Amagata T, Whitman S, Johnson TA, Stessman CC, Loo CP, Lobkovsky E, Clardy J, Crews P, Holman TR (2003) J Nat Prod 66:230–235

    CAS  Google Scholar 

  71. Kokubo S, Yogi K, Uddin MJ, Inuzuka T, Suenaga K, Ueda K, Uemura D (2001) Chem Lett 2:176–177

    Google Scholar 

  72. Gunasekera SP, McCarthy PJ, Kelly-Borges M (1996) J Am Chem Soc 118:8759–8760

    CAS  Google Scholar 

  73. Marcos IS, Escola MA, Moro RF, Basabe P, Diez D, Sanz F, Mollinedo F, de la Iglesia-Vicente J, Sierra BG, Urones JG (2007) Bioorg Med Chem 15(17):5719–37

    CAS  Google Scholar 

  74. Rudi A, Yosief T, Schleyer M, Kashman Y (1999) Org Lett 1:471–472

    CAS  Google Scholar 

  75. Tanaka J, Higa T, Suwanborirux K, Kokpol U, Bernardinelli G, Jefford CW (1993) J Org Chem 58:2999–3002

    CAS  Google Scholar 

  76. Bae J, Jeon JE, Lee YJ, Lee HS, Sim CJ, Oh KB, Shin J (2011) J Nat Prod 74:1805–1811

    CAS  Google Scholar 

  77. He H, Kulanthaivel P, Baker BJ (1994) Tetrahedron Lett 35:7189–7192

    CAS  Google Scholar 

  78. Hata T, Tanaka K, Katsumura S (1999) Tetrahedron Lett 40:1731–1734

    CAS  Google Scholar 

  79. Conte MR, Fattorusso E, Lanzotti V, Magno S, Mayol L (1994) Tetrahedron 50:849–856

    CAS  Google Scholar 

  80. Carotenuto A, Fattorusso E, Lanzotti V, Magno S, Mayol L (1996) Liebigs Ann 1996:77–81

    Google Scholar 

  81. Carotenuto A, Fattorusso E, Lanzotti V, Magno S, Carnuccio R, Iuvone T (1998) Comp Biochem Physiol 119(2):119–123

    CAS  Google Scholar 

  82. Lal AR, Cambie RC, Rickard CEF, Bergquist PR (1994) Tetrahedron Lett 35:2603–2606

    CAS  Google Scholar 

  83. Gomez-Paloma L, Randazzo A, Minale L, Debitus C, Roussakis C (1997) Tetrahedron 53:10451–10458

    CAS  Google Scholar 

  84. Margarucci L, Monti MC, Tosco A, Riccio R, Casapullo A, Kar S, Swain MR, Ray RC (2013) Curr Pharm Des 19:3175–3189

    Google Scholar 

  85. Miyamoto T, Sakamoto K, Amano H, Arakawa Y, Nagarekawa Y, Komori T, Higuchi R, Sasaki T (1999) Tetrahedron 55:9133–9142

    CAS  Google Scholar 

  86. Iguchi K, Shimada Y, Yamada Y (1992) J Org Chem 57:522–524

    CAS  Google Scholar 

  87. Lunardi I, Santiago GMP, Imamura PM (2002) Tetrahedron Lett 43:3609–3611

    CAS  Google Scholar 

  88. De Rosa S, De Stefano S, Zavodnik N (1988) J Org Chem 53:5020–5023

    CAS  Google Scholar 

  89. Bourguet-Kondracki ML, Longeon A, Debitus C, Guyot M (2000) Tetrahedron Lett 41:3087–3090

    CAS  Google Scholar 

  90. Kobayashi J, Yuasa K, Kobayashi T, Sasaki T, Tsuda M (1996) Tetrahedron 52:5745–5750

    CAS  Google Scholar 

  91. Tsuda M, Ishibashi M, Agemi K, Sasaki T, Kobayashi J (1991) Tetrahedron 47:2181–2194

    CAS  Google Scholar 

  92. Liu HB, Edrada-Ebel R, Ebel R, Wang Y, Schulz B, Draeger S, Muller WEG, Wray V, Lin WH, Proksch P (2011) Helv Chim Acta 94:623–631

    CAS  Google Scholar 

  93. Yang T, Lu Z, Meng L, Wei S, Hong K, Zhu W, Huang C (2012) Bioorg Med Chem Lett 22:579–585

    CAS  Google Scholar 

  94. Fattorusso E, Magno S, Santacroce C, Sica D (1972) Tetrahedron 28:5993–5997

    CAS  Google Scholar 

  95. Tsukamoto S, Miura S, van Soest RWM, Ohta T (2003) J Nat Prod 66:438–440

    CAS  Google Scholar 

  96. Pettit GR, Cichacz ZA, Tan R, Herald DL, Melody N, Hoard MS, Doubek DL, Hooper NA (1998) Collect Czech Chem Commun 63:1671–1677

    CAS  Google Scholar 

  97. Rueda A, Zubia E, Ortega MJ, Carballo JL, Salva J (1997) J Org Chem 62:1481–1485

    CAS  Google Scholar 

  98. Youssef DT, Yamaki RK, Kelly M, Scheuer PJ (2002) J Nat Prod 65:2–6

    CAS  Google Scholar 

  99. Tsuchiya N, Sato A, Hata T, Sato N, Sasagawa K, Kobayashi T (1998) J Nat Prod 61:468–473

    CAS  Google Scholar 

  100. Ryu G, Matsunaga S, Fusetani N (1996) J Nat Prod 59:515–517

    CAS  Google Scholar 

  101. Pettit GR, Cichacz ZA, Tan R, Hoard MS, Melody N, Pettit RK (1998) J Nat Prod 61:13–16

    CAS  Google Scholar 

  102. Cimino G, De Stefano S, Minale L (1974) Experientia 30:846

    Google Scholar 

  103. De Rosa S, Puliti R, Crispino A, De Giulio A, Mattia CA, Mazzarella L (1994) J Nat Prod 57:256–262

    CAS  Google Scholar 

  104. Kubo I, Ganjian I (1981) Experientia 37:1063–1064

    CAS  Google Scholar 

  105. Caprioli V, Cimino G, Colle R, Gavagnin M, Sodano G, Spinella A (1987) J Nat Prod 50:146–151

    CAS  Google Scholar 

  106. Szallasi A, Bíró T, Modarres S, Garlaschelli L, Petersen M, Klusch A, Vidari G, Jonassohn M, De Rosa S, Sterner O, Blumberg PM, Krause JE (1998) Eur J Pharmacol 356:81–89

    CAS  Google Scholar 

  107. Yasuda F, Tada H (1981) Experientia 37:110–111

    CAS  Google Scholar 

  108. Cimino G, De Rosa S, De Stefano S (1981) Experientia 37:214–215

    CAS  Google Scholar 

  109. Roy MC, Tanaka J, de Voogd N, Higa T (2002) J Nat Prod 65:1838–1842

    CAS  Google Scholar 

  110. Crews P, Bescansa P, Bakus GJ (1985) Experientia 41:690–691

    CAS  Google Scholar 

  111. Miyaoka H, Nishijima S, Mitome H, Yamada Y (2000) J Nat Prod 63:1369–1372

    CAS  Google Scholar 

  112. Harinantenaina L, Brodie PJ, Maharavo J, Bakary G, TenDyke K, Shen Y, Kingston DG (2013) Bioorg Med Chem 21:2912–2917

    CAS  Google Scholar 

  113. Diyabalanage T, Ratnayake R, Bokesch HR, Ransom TT, Henrich CJ, Beutler JA, McMahon JB, Gustafson KR (2012) J Nat Prod 75:1490–1494

    CAS  Google Scholar 

  114. Braekman JC, Daloze D, Kaisin M, Moussiaux B (1985) Tetrahedron 41:4603–4614

    CAS  Google Scholar 

  115. Fu X, Zeng LM, Su JY, Pais M, Potier P (1992) J Nat Prod 55:1607–1613

    CAS  Google Scholar 

  116. Bowden BF, Coll JC, Li H, Cambie RC, Kernan MR, Bergquist PR (1992) J Nat Prod 55:1234–1240

    CAS  Google Scholar 

  117. Renner MK, Jensen PR, Fenical W (1998) J Org Chem 63:8346–8354

    CAS  Google Scholar 

  118. Renner MK, Jensen PR, Fenical W (2000) J Org Chem 65:4843–4852

    CAS  Google Scholar 

  119. Cueto M, Jensen PR, Fenical W (2002) Org Lett 4:1583–1585

    CAS  Google Scholar 

  120. Somerville MJ, Hooper JNA, Garson MJ (2006) J Nat Prod 69:1587–1590

    CAS  Google Scholar 

  121. Li H-J, Amagata T, Tenney K, Crews P (2007) J Nat Prod 70:802–807

    CAS  Google Scholar 

  122. Diaz-Marrero AR, Matainaho T, van Soest R, Roberge M, Andersen RJ (2008) Nat Prod Res 22:1304–1309

    CAS  Google Scholar 

  123. Song J, Jeong W, Wang N, Lee H-S, Sim CJ, Oh K-B, Shin J (2008) J Nat Prod 71:1866–1871

    CAS  Google Scholar 

  124. Zhang H-J, Fang H-F, Yi Y-H, Lin H-W (2009) Helv Chim Acta 92:762–767

    Google Scholar 

  125. Jeon J, Bae J, Lee KJ, Oh K-B, Shin J (2011) J Nat Prod 74:847–851

    CAS  Google Scholar 

  126. Chang Y-C, Tseng S-W, Liu L-L, Chou Y, Ho Y-S, Lu M-C, Su J-H (2012) Mar Drugs 10:987–997

    CAS  Google Scholar 

  127. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Biochem Pharmacol 79:610–622

    CAS  Google Scholar 

  128. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Biochem Pharmacol 79:1837–1837

    CAS  Google Scholar 

  129. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Biochem Pharmacol 79:610–22

    CAS  Google Scholar 

  130. Kopf S, Viola K, Atanasov AG, Jarukamjorn K, Rarova L, Kretschy N, Teichmann M, Vonach C, Saiko P, Giessrigl B, Huttary N, Raab I, Krieger S, Schumacher M, Diederich M, Strnad M, de Martin R, Szekeres T, Jäger W, Dirsch VM, Mikulits W, Grusch M, Dolznig H, Krupitza G (2013) Arch Toxicol 87:1851–61

    CAS  Google Scholar 

  131. Cimino G, De Luca P, De Stefano S, Minale L (1975) Tetrahedron 31:271–275

    CAS  Google Scholar 

  132. Cimino G, De Rosa S, De Stefano S, Puliti R, Strazzullo G, Mattia CA, Mozzarella L (1987) Tetrahedron 43:4777–4784

    CAS  Google Scholar 

  133. De Pasquale R, Circosta C, Occhiuto F, De Stefano S, De rosa S (1988) Pharmacol Res Commun 20(Suppl 5):23–26

    CAS  Google Scholar 

  134. Zeng L, Fu X, Su J (1991) J Nat Prod 54:421–427

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Tommonaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tommonaro, G., De Rosa, S., Carnuccio, R., Maiuri, M., De Stefano, D. (2015). Marine Sponge Sesterpenoids as Potent Apoptosis-Inducing Factors in Human Carcinoma Cell Lines. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_22

Download citation

Publish with us

Policies and ethics