Skip to main content

Anti-Cancer Effects of Chitin and Chitosan Derivatives

  • Chapter
  • First Online:

Abstract

Despite considerable progress in medical research, cancer is still one of the high-ranking causes of death in the world. It is the second most common cause of death due to disease after heart disease and according to World Health Organization it will be cause of death more than 10 million people in 2020. Therefore one of the main research goal for researchers investigating new anticancer agents. But the major complication for the cancer cure without surgeries is side effects. Especially, cytotoxic anti-cancer chemotherapeutic agents generally produce severe side effects, while reducing host resistance to cancer and infections. Therefore, it is important to find new, powerful anti-cancer agents that are highly effective, biodegradable and biocompatible. Chitin and chitosan are biopolymers which have unique structural possibilities for chemical and mechanical modifications to generate novel properties, functions. These biopolymers are biocompatible, biodegradable and non-toxic and their chemical properties allow them easily processed into gels, sponges, membranes, beads and scaffolds forms also. Due to their unique properties, they are excellent candidate for cancer cure or cancer diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nicol S (1991) Life after death for empty shells: crustacean fisheries create a mountain of waste shells, made of a strong natural polymer, chitin. Now chemists are helping to put this waste to some surprising uses. New Sci 1755:36–38

    Google Scholar 

  2. Sashiwa H, Saimoto H, Shigemasa Y, Ogawa R, Tokura S (1990) Lysozyme susceptibility of partially deacetylated chitin. Int J Biol Macromol 90:295–296

    Article  Google Scholar 

  3. Shigemasa Y, Saito K, Sashiwa H, Saimoto H (1994) Enzymatic degradation of chitins and partially deacetylated chitins. Int J Biol Macromol 16:43–49

    Article  CAS  Google Scholar 

  4. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I (1984) Immunological activity of chitin and its derivatives. Vaccine 2:93–99

    Article  CAS  Google Scholar 

  5. Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T (1997) Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 18:947–951

    Article  CAS  Google Scholar 

  6. Tokura S, Ueno K, Miyazaki S, Nishi N (1997) Molecular weight dependent antimicrobial activity by chitosan. Macromol Symp 120:1–9

    Article  CAS  Google Scholar 

  7. Tanigawa T, Tanaka Y, Sashiwa H, Saimoto H, Shigemasa Y (1992) Various biological effects of chitin derivatives. Elsevier, Sandford

    Google Scholar 

  8. Okamoto Y, Minami S, Matsuhashi A, Sashiwa H, Saimoto H, Shigemasa Y, Tanigawa T, Tanaka Y, Tokura S (1993) Polymeric N-acetyl-d-glucosamine (Chitin) induces histionic activation in dogs. J Vet Med Sci 55:739–742

    Article  CAS  Google Scholar 

  9. Kweon DK, Song SB, Park YY (2003) Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 24:1595–1601

    Article  CAS  Google Scholar 

  10. Khnor E, Lim L (2003) Implantated applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  Google Scholar 

  11. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Biomaterials 22:2075–2080

    Article  CAS  Google Scholar 

  12. Mao JS, Liu HF, Yin YJ, Yao KD (2003) The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different method. Biomaterials 24:1621–1629

    Article  CAS  Google Scholar 

  13. Gingras M, Paradis I, Berthod F (2003) Nerve regeneration in a collagen–chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 24:1653–1661

    Article  CAS  Google Scholar 

  14. Wang YC, Lin MC, Wang DM, Hsieh HJ (2003) Fabrication of a novel porous PGA–chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057

    Article  CAS  Google Scholar 

  15. Kong CS, Kim JA, Ahn B, Byun HG, Kim SK (2010) Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochem 45:179–186

    Article  CAS  Google Scholar 

  16. Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Article  CAS  Google Scholar 

  17. Park PJ, Je JY, Kim SK (2004) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55:17–22

    Article  CAS  Google Scholar 

  18. Huang R, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–2408

    Article  CAS  Google Scholar 

  19. Seo WG, Pae HO, Kim NY, Oh GS, Park IS, Kim YH, Kim YM, Lee Y, Jun CD, Chung HT (2000) Synergistic cooperation between water-soluble chitosan oligomers and interferon-[gamma] for induction of nitric oxide synthesis and tumoricidal activity in murine peritoneal macrophages. Cancer Lett 159:189–195

    Article  CAS  Google Scholar 

  20. Karadeniz F, Artan M, Kim MM, Kim SK (2008) Prevention of cell damage on pancreatic beta cells by chitooligosaccharides. J Biotechnol 136:539–540

    Article  Google Scholar 

  21. Artan M, Karadeniz F, Karagozlu MZ, Kim MM, Kim SK (2010) Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr Res 345:656–662

    Article  CAS  Google Scholar 

  22. Horowitz ST, Roseman S, Blumenthal HJ (1957) The preparation of glucosamine oligosaccharides. I. Separation. J Am Chem Soc 79:5046–5048

    Article  CAS  Google Scholar 

  23. Tsukada S, Inoue Y (1981) Conformational properties of chito-oligosaccharides: titration, optical rotation, and carbon-13 NMR studies of chito-oligosaccharides. Carbohydr Res 88:19–38

    Article  CAS  Google Scholar 

  24. Defaye J, Guillot JM (1994) A convenient synthesis for anomeric 2-thioglucobioses, 2-thiokojibiose and 2-thiosophorose. Carbohydr Res 253:185–194

    Article  CAS  Google Scholar 

  25. Izume M, Ohtakara A (1987) Preparation of D-glucosamine oligosaccharides by the enzymatic hydrolysis of chitosan (Biological Chemistry). Biosci Biotechnol Biochem 51:1189–1191

    CAS  Google Scholar 

  26. Qin C, Du Y, Xiao L, Li Z, Gao X (2002) Enzymic preparation of water-soluble chitosan and their antitumor activity. Int J Biol Macromol 31:111–117

    Article  CAS  Google Scholar 

  27. Hahn MG (1996) Microbial elicitors and their receptors in plants. Ann Rev Phytopathol 34:387–412

    Article  CAS  Google Scholar 

  28. Muzzarelli RAA (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 53:131–140

    Article  CAS  Google Scholar 

  29. Felt C, Buri P, Gurny R (1998) Chitosan: a unique polysaccharides for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  30. Murata J, Saiki I, Matsuno K, Tokura S, Azumo I (1990) Inhibition of tumor cell arrest in lungs by anti metastatic chitin heparinoid. Jpn J Cancer Res 80:866–872

    Article  Google Scholar 

  31. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbhydr Res 151:403–408

    Article  CAS  Google Scholar 

  32. Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Growth inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against meth-A solid tumor. Chem Pharm Bull 36:784–790

    Article  CAS  Google Scholar 

  33. Maeda Y, Kimura Y (2004) Antitumor effects of various low-molecular weight chitosans are due to increased natural killer activity intestinal intraphelial lymphocytes in sarcoma 180-bearing mice. Nutr Cancer 134:945–950

    CAS  Google Scholar 

  34. Harish Prashanth KV, Tharanathan RN (2005) Depolymerized products of chitosan as potent inhibitors of tumor-induced angiogenesis. Biochim Biophys Acta 11:1722–1729

    Google Scholar 

  35. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466

    Article  CAS  Google Scholar 

  36. Sirica AE, Woodman RJ (1971) Selective aggregation of L1210 leukemia cells by the polycation chitosan. J Nat Cancer Inst 47:377–388

    CAS  Google Scholar 

  37. Ouchi T, Inosaka K, Banba T, Ohya Y (1992) Design of chitin or chitosan/5-fluorouracil conjugate having antitumor activity. Elsevier Applied Science, United Kingdom

    Google Scholar 

  38. Karagozlu, MZ, Karadeniz F, Kong CS, Kim SK (2012) Aminoethylated chitooligomers and their apoptotic activity on AGS human cancer cells. Carbohdr Polym 87:1383–1389

    Article  CAS  Google Scholar 

  39. Nishiyama Y, Yoshikawa T, Ohara N, Kurita K, Hojo K, Kamada H, Tsutsumi Y, Mayumi T, Kawasaki K (2000) A conjugate from a laminin-related peptide, Try-Ile-Gly-Ser-Arg, and chitosan: efficient and regioselective conjugation and significant inhibitory activity against experimental cancer metastasis. J Chem Soc Perkin Trans 1:1161–1165

    Article  Google Scholar 

  40. Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang TW, Kim TW, Shim HC (2008) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–34

    Article  CAS  Google Scholar 

  41. Obara K, Ishihara M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, Saito Y, Yura H, Matsui T, Hattori H, Takase B, Ishihara M, Kikuchi M, Maehara T (2005) Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 110:79–89

    Article  CAS  Google Scholar 

  42. Aoshima M, Tsukagoshi S, Sakurai Y, Oh-ishi J, Ishida T (1976) Antitumor activities of newly synthesized N4-acyl-1-beta-d-arabinofuranosylcytosine. Cancer Res 36:2726–2732

    CAS  Google Scholar 

  43. Onishi H, Pithayanukul P, Nagai T (1990) Antitumor characteristics of the conjugate of N4-(4-carboxybutyryl)-ara-C with ethylenediamine-introduced dextran and its resistance to cytidine deaminase. Drug Des Deliv 6:273–280

    CAS  Google Scholar 

  44. Onishi H, Seno Y, Pithayanukul P, Nagai T (1991) Conjugate of ethylenediamine introduced dextran. Drug release profiles and further in vivo study of its antitumor effects. Drug Des Deliv 7:139–145

    CAS  Google Scholar 

  45. Aoshima M, Tsukagoshi S, Sakurai Y, Oh-ishi J, Ishida T (1977) N4-behenoyl-1-beta-d-arabinofuranosylcytosine as a potential new antitumor agent. Cancer Res 37:2481–2486

    CAS  Google Scholar 

  46. Kato Y, Saito M, Fukushima H, Takeda Y, Hara T (1984) Antitumor activity of 1-beta-d-arabinofuranosylcytosine conjugated with polyglutamic acid and its derivative. Cancer Res 44:25–30

    CAS  Google Scholar 

  47. Ichikawa H, Onishi H, Takahata T, Machida Y, Nagai T (1993) Evaluation of the conjugate between N4-(4-carboxybutyryl)1-β-d-arabinofuranosylcytosine. Drug Des Discov 10:343–353

    CAS  Google Scholar 

  48. Manjusha EM, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohdr Polym 80:414–420

    Google Scholar 

  49. Aoki K, Furuhata S, Hatanaka K, Maeda M, Remy JS, Behr JP, Terada M, Yoshida T (2001) Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murineperitoneal cavity. Gene Ther 8:508–514

    Article  CAS  Google Scholar 

  50. Miyata K, Oba M, Kano MR, Fukushima S, Vachutinsky Y, Han M, Koyama H, Miyazono K, Nishiyama N, Kataoka K (2008) Polyplex micelles from triblock copolymers composed of tandemly aligned segments with biocompatible, endosome escaping, and DNA-condensing functions for systemic gene delivery to pancreatic tumor tissue. Pharm Res 25:2924–2936

    Article  CAS  Google Scholar 

  51. Vernejoul F, Faure P, Benali N, Calise D, Tiraby G, Pradayrol L, Susini C, Buscail L (2002) Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res 62:6124–6131

    CAS  Google Scholar 

  52. You YZ, Manickam DS, Zhou QH, Oupick`y D (2007) Reducible poly(2 dimethyl aminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity. J Control Release 122:217–225

    Article  CAS  Google Scholar 

  53. Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T (2008) Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J Control Release 125:145–154

    Article  CAS  Google Scholar 

  54. Kean T, Roth S, Thanou M (2005) Trimethylated chitosans as non-viral gene delivery vectors: cytotoxicity and transfection efficiency. J Control Release 103:643–653

    Article  CAS  Google Scholar 

  55. Thanou M, Florea BI, Geldof M, Junginger HE, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23:153–159

    Article  CAS  Google Scholar 

  56. Safari S, Dorkoosh FA, Soleimani M, Zarrintan MH, Akbari H, Larijani B, Rafiee Tehrani M (2011) N-diethylmethyl chitosan for gene delivery to pancreatic cancer cells and the relation between charge ratio and biologic properties of polyplexes via interpolations polynomial. Int J Pharm 420:350–357

    Article  CAS  Google Scholar 

  57. Cho YI, Park S, Jeong SY, Yoo HS (2009) In vivo and in vitro anti-cancer activity of thermo-sensitive and photo-crosslinkable doxorubicin hydrogels composed of chitosan–doxorubicin conjugates. Eur J Pharm Biopharm 73:59–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karagozlu, M., Kim, SK. (2015). Anti-Cancer Effects of Chitin and Chitosan Derivatives. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_20

Download citation

Publish with us

Policies and ethics