Skip to main content

Amelioration Effect of a Tertiary Sulfonium Compound, Dimethylsulfoniopropionate, in Green Sea Algae on Ehrlich Ascitic-tumor, Solid Tumor and Related Diseases

  • Chapter
  • First Online:

Abstract

A tertiary sulfonium compound, dimethylsulfoniopropionate (DMSP), has been studied intensively in bacteria, plankton, algae, and halophytic plants in estuarine, coastal, and oceanic waters. Moreover, DMSP is well known to be contained in large amounts in green sea algae. However, there is no report on the physiological roles except for the functions of an osmoregurant and a cryoprotectant. Therefore, we have investigated the physiological function of DMSP in the terrestrial animals suffered from inflammatory disorders, especially free cell and solid cancers. As a result, we have found that DMSP exerts significant healing effects on a wide range of immune-deficient diseases: cancer, stress-induced gastric ulcers, various symptoms with aging in senescence-accelerated mice and neurodegenerative disorders in central nervous systems (Alzheimer’s and Parkinson’s diseases) in rodents. Of great interest is that administration of DMSP cures chronic 3’-methyl-4-dimethylaminoazobenzene (MeDAB)-induced solid cancers in rats and crucial free cell cancers of Ehrlich ascites carcinoma with an unavoidable rapid death in mice with no toxicity. These results demonstrate that DMSP plays a pivotal role for immunotherapy in these inflammatory disorders at the precancer state, in particular cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Provinciali M, Cardelli M, Marchegiani F, Pierpaoli FE (2013) Impact of cellular scenescence in aging and cancer. Curr Pharm Des 19:1699–1709

    CAS  Google Scholar 

  2. Tollefsbol TO (2014) Dietary epigenetics in cancer and aging. Cancer Treat Res 159:257–267

    Article  Google Scholar 

  3. Fulop T, Labi A, Kotb R, Pawelec G (2013) Cancer and Immunology of aging and cancer development. Cancer Aging 38:38–48. doi:10.1159/000343599

    Article  Google Scholar 

  4. Misra D, Seo PH, Cohen HJ (2004) Aging and cancer. Clin Adv Hematol Oncol 2:457–465

    Google Scholar 

  5. Rates SMK (2001) Plants as source of drugs Toxicon 39:603–613

    Article  CAS  Google Scholar 

  6. Tsuda H, Ohshima Y, Nomoto H, Fujita K, Matsuda E, Iigo M et al (2004) Cancer prevention by natural compounds. Drug Metab Pharmacokimet 19:345–326

    Google Scholar 

  7. Truong D, Hindmarsh W, O’Brien PJ (2009) The molecular mechanisms of diallyl disulfide and diallyl sulfide induced hepathocyte cytotoxicity. Chemo-Biol Interact 180:79–88

    Article  CAS  Google Scholar 

  8. Nakajima K (1996) Effects of DMSP and related compounds on behavior, growth and stress resistance of fish, amphibians and crustaceans. In: Kien RP, Vissher RT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compound. Plenum, New York, pp 165–176

    Chapter  Google Scholar 

  9. Takeda T, Hosokawa M, Higuchi K (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated scenescence. Am Geom Soc 39:911–919

    CAS  Google Scholar 

  10. Hosokawa K, Kasai R, Higichi K, Takeshita S, Shimizu K, Hamamoto H, Honnma A et al (1984) Grading score system: a method for evaluation of the degree of senescence accelerated mouse (SAM). Mech Aging Dev 26:91–102

    Article  CAS  Google Scholar 

  11. Toichi E, Katoh H, Hosokawa T, Hosonoda M. (1994) Immune activities in SAM mice: cellular and genetic basis for the impaired responsiveness of helper T cells in the humoral immunity: the sam model of senescence. In: Takeda T (ed) Excerpta medica. Amsterdam, New York, pp 41–46

    Google Scholar 

  12. Haruna H, Inaba K, Inaba YK, Fukuba Doi H, Toki J, Ikehara S (1994) Abnormality of B cells and dendric cells in SAM P1 mice: the sam model of senescence. In: Takeda T (ed) Excerpta medica. Amsterdam, pp 175–178

    Google Scholar 

  13. Nakajima K (1991) Dimethyl-β-propithetin, new resistive-agent against stress-induced gastric ulcers in rats. J Nutr Sci Vitaminol 37:229–238

    Article  CAS  Google Scholar 

  14. Nakajima K (2004) Effect of a sulfur-containing compounds, dimethylsulfoniopropionate, on acute alloxan-diabetic rats. ITE Lett Battries, New Technol Med 5:394–398

    CAS  Google Scholar 

  15. Nakajima K (2004) Ameliorating effects of dimethylsulfoniopropionate on the ulcers in senescence accelerated mouse (SAM P1). Bull Koshien Univ 32:1–6

    Google Scholar 

  16. Nakajima K (2005) Remarkable effects of dimethylsulfoniopropionate on the loss of learning and memory of senescence-accelerated mouse (SAM P1). ITE Lett Battries, New Technol Med 6:68–72

    CAS  Google Scholar 

  17. Nakajima K (2004) Direct effects of high concentrations of dimethylsulfoniopropionate, vitamin E and ferulic acid on the senility of aged senescence-accelerated mouse (SAM P8). J Nutr Sci Vitaminol 50:231–237

    Article  CAS  Google Scholar 

  18. Nakajima K (2002) Long term effect of dimethylsilfoniopropionate on the senility of senescence accelerated mouse-R/1 and–P/8. ITE Lett Battries, New Technol Med 3:616–622

    CAS  Google Scholar 

  19. Nakajima K, Minematsu M (2002) Effects of the diets containing green sea alga, Monosodium nitidum, on the senile phenomina of the senescence accelerated mouse. ITE Lett Battries, New Technol Med 3:367–370

    CAS  Google Scholar 

  20. Nakajima K, Minematsu M (2002) Suppressive effects of dimethylsulfoniopropionate on 3′-methyl-4-dimethylaminoazobenzene-induced liver cancers in rats. ITE Lett Battries, New Technol Med 3:371–374

    CAS  Google Scholar 

  21. Nakajima K, Yokoyama A, Nakajima Y (2009) Anticancer effects of a tertiary sulfonium compound, dimethylsulfoniopropionate, in green sea algae on Ehrlich ascites carcinoma-bearing mice. J Nutr Sci Vitaminol 55:434–438

    Article  CAS  Google Scholar 

  22. Nakajima K, Nakajima Y (2011) Carcinoma infection and Immune systems of Ehrlich ascites carcinoma-bearing mice treated with structurally similar sulfonium compounds. Biosci Biotechnol Biochem 75:808–811

    Article  CAS  Google Scholar 

  23. Nakajima K, Minematsu M (2006) Amelioration of dimethylsulfoniopropionate on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease of mice. J Nutr Sci Vitaminol 52:70–74

    Article  CAS  Google Scholar 

  24. Minematsu M, Nakajima K (2008) Significant effect of dimethylsulfoniopropionate on Parkinson’s disease of senescence-accelerated mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Nutr Sci Vitaminol 54:335–338

    Article  CAS  Google Scholar 

  25. Nakajima K, Miyamoto Y (2007) Effects of nerve growth factor and dimethylsulfoniopropionate in green sea algae on the outgrowth of neurites from phechromocytomacells. J Nutr Sci Vitaminol 53:441–445

    Article  CAS  Google Scholar 

  26. Nakajima K, Minematsu M, Miyamoto Y (2008) Inhibition of the outgrowth and elongation of neurites from pheochromocytoma cells by 1-methyl-1,2,3,6-tetrahydropyridine and preventive effects of dimethylsulfoniopropionate in the presence of nerve growth factor. J Nutr Sci Vitaminol 4:176–180

    Article  Google Scholar 

  27. Reed RM (1983) Measurement and osmotic significance of β-dimethyl sulfonio propionate in marine macroalgae. Mar Biol Lett 4:173–181

    CAS  Google Scholar 

  28. Iida H (1988) Studies on the accumulation of dimethyl-β-propiothetin and the formation of dimethyl sulfide in aquatic organisms (Japanese). Bull Tokai Reg Fish Res Lab No 124:35–111

    Google Scholar 

  29. Bentley R, Chasteen, TG (2004) Environmental VOSCS—formation and degradation of dimethylsulfide, methanthiol and related materials. Chemoshere 55:291–317

    Article  CAS  Google Scholar 

  30. Challenger A, Bywood B, Thomas P, Haywood B (1957) Part XVI. The natural occurrence and chemical reactions of some thetins. Archit Biochem Biophys 69:514–523

    Article  CAS  Google Scholar 

  31. Cantoni GL, Anderson DG (1956) Enzymic cleavage of dimethylpropiothetin by Polysiphonialanosa. J Biol Chem 222:171–177

    CAS  Google Scholar 

  32. Yoch DC (2002) Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815

    Article  CAS  Google Scholar 

  33. Cohen F, Kearney KA, Zwgans LS, Kemeny ME, Neuhaus JM, Stites DP (1999) Differential immune system chnges with acute and persistent stress for optimists vs pessimists. Brain Behav Immun 13:155–174

    Article  CAS  Google Scholar 

  34. Bond GL, Levine AJ (2007) A single nucleotide polymorphism in the 53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26:1317–1323

    Article  CAS  Google Scholar 

  35. Ludgendorf SK, Sood AK, Antoni MH (2010) Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol 26:4094–4099. doi:10.1200/JCO.2009.26.9357

    Article  Google Scholar 

  36. Moreno S, Lutgendorf SK, Sood AK (2010) Impact of stress on cancer metastasis. Future Oncol 6:1863–1881. doi:10.2217/fon.10.142

    Article  Google Scholar 

  37. Sloan EK, Priceman SJ, Cox BF, Yu SS, Pimental MA, Tangkanangnukul V, Arevalo JMG, et al (2010) Sympathetic nervous system induces a metastatic swithch in primary breast cancer. Caner Res 70:7042–7047. doi:10.1158/0008-5472.can-10-0522

    Article  CAS  Google Scholar 

  38. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL (2011) Mechanical compression drives cells toward invasive phenotype. Proc Nat Acad Sci 109:911–916

    Article  Google Scholar 

  39. Provincia M, Maurizo C, Francesca M, Pierpaolli E (2013) Inpact of cellular senescene in aging and cancer. Curr Pharm Des 19:1699–1709

    Google Scholar 

  40. Nishikawa H, Kimura T, Kita R, Osaki Y (2013) Treatment for hepatocellular carcinoma in elderly patients: a literature review. J Cancer 4:635–643

    Article  Google Scholar 

  41. Misra D, Seo PH, Cohen HJ (2004) Aging and cancer. Clin Adv Hematol Oncol 2:457–465

    Google Scholar 

  42. Rabinovitch M, Stefano MJ (1973) Particle recognition by cultivated macrophages. J Immunol 110:695–701

    CAS  Google Scholar 

  43. Aufray C, Sieweke M, Geissmann HF (2009) Blood monocytes: development heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

    Article  Google Scholar 

  44. Jaiswal S, Chao MP, Majeti R, Weissman IL (2010) Macrophages as mediators of tumor immunosurveillance. Cell 31:212–219

    CAS  Google Scholar 

  45. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chmokinrs, preteolytic enzyme, adhesion molecules, cytokines and stromal cells. Exp Hematol 30:973–981

    Article  CAS  Google Scholar 

  46. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M et al (2003) Regulation of macrophage activation. Cell Mol Life Sci 60:2334–2346

    Article  CAS  Google Scholar 

  47. Parihar A, Eubacnk TD, Doseff AI (2010) Monocytes and macrophages regulate immunity through dynamic network of survival and cell death. J Innate Immun 2:204–215

    Article  Google Scholar 

  48. Dimmeler S (2010) Regulation of bone marrow-derived vascular progenitor cell mobilization and maintenance. Arterioscler, Thromb, Vasc Biol 30:1088–1093

    Article  CAS  Google Scholar 

  49. Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, et al (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234

    Article  CAS  Google Scholar 

  50. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  CAS  Google Scholar 

  51. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM (2009) Differential mobilization of subsets of progenitor cells from bone marrow. Cell Stem Cell 4:62–72

    Article  CAS  Google Scholar 

  52. Schulz C, Andrian UH, Massberg S (2009) Hematopoietic stem and progenitor cells: their mobilization and homing to bone marrow and peripheral tissue. Immunol Res 44:160–168

    Article  Google Scholar 

  53. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J (2010) Innate immunity as orchestrator of stem cell mobilization. Leukemia 24:1667–1675

    Article  CAS  Google Scholar 

  54. Xie W, Ren B (2013) Enhancement pluripotency and lineage specification. Science 341:245–247

    Article  CAS  Google Scholar 

  55. Nakajima K, Tsujiwaki S, Nakajima Y (2014) Antican Res 34:4045–4050

    Google Scholar 

Download references

Acknowledgements

I heartily thank Asst. Y. Nakajima, Prof. M. Minematsu, Mr. Y. Miyamoto, Miss. M. Tsujiwaki, and other colleagues in Koshien University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nakajima Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakajima, K. (2015). Amelioration Effect of a Tertiary Sulfonium Compound, Dimethylsulfoniopropionate, in Green Sea Algae on Ehrlich Ascitic-tumor, Solid Tumor and Related Diseases. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_11

Download citation

Publish with us

Policies and ethics