On the Problem of Predicting Real World Characteristics from Virtual Worlds

  • Muhammad Aurangzeb AhmadEmail author
  • Cuihua Shen
  • Jaideep Srivastava
  • Noshir Contractor
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Availability of massive amounts of data about the social and behavioral characteristics of a large subset of the population opens up new possibilities that allow researchers to not only observe people’s behaviors in a natural, rather than artificial, environment but also conduct predictive modeling of those behaviors and characteristics. Thus an emerging area of study is the prediction of real world characteristics and behaviors of people in the offline or “real” world based on their behaviors in the online virtual worlds. We explore the challenges and opportunities in the emerging field of prediction of real world characteristics based on people’s virtual world characteristics, i.e., what are the major paradigms in this field, what are the limitations in current predictive models, limitations in terms of generalizability, etc. Lastly, we also address the future challenges and avenues of research in this area.


Computational social science Behavioral prediction Massive online games Virtual worlds 



Special thanks to Mushtaq Ahmad Mirza and Khalida Parveen for being there.


  1. 1.
    Ahmad, M.A., Keegan, B., Srivastava, J., Williams, D., Contractor, N.: Mining for gold farmers: Automatic detection of deviant players in MMOGs. In: Computational Science and Engineering, 2009. CSE’09. International Conference on (vol. 4, pp. 340–345). IEEE (2009, August)Google Scholar
  2. 2.
    Ahmad, M.A., Huffaker, D., Wang, J., Treem, J., Kumar, D., Poole, M.S., Srivastava, J.: The many faces of mentoring in an MMORPG. In: Social Computing (SocialCom), 2010 IEEE Second International Conference on (pp. 270–275) IEEE (2010, August)Google Scholar
  3. 3.
    Ahmad, M.A., Borbora, Z., Shen, C., Srivastava, J., Williams, D.: Guild play in MMOGs: rethinking common group dynamics models. In: Social Informatics, pp. 145–152. Springer Berlin Heidelberg (2011)Google Scholar
  4. 4.
    Ahmad, M.A., Ahmed, I., Srivastava, J., Poole, M.S.: Trust me, i’m an expert: Trust, homophily and expertise in MMOS. In: Privacy, security, risk and trust (passat), 2011 IEEE third international conference on and 2011 IEEE third international conference on social computing (socialcom) (pp. 882–887). IEEE ($62011, October)Google Scholar
  5. 5.
    Babbie, E.R.: Survey research methods (1990)Google Scholar
  6. 6.
    Balicer, R. D.: Modeling infectious diseases dissemination through online role-playing games. Epidemiology 18(2), 260–261 (2007)CrossRefGoogle Scholar
  7. 7.
    Borbora, Z., Srivastava, J., Hsu, K.W., Williams, D.: Churn prediction in MMORPGS using player motivation theories and an ensemble approach. In: Privacy, security, risk and trust (passat), 2011 IEEE third international conference on and 2011 IEEE third international conference on social computing (socialcom) (pp. 157–164). IEEE (2011, October)Google Scholar
  8. 8.
    Castronova, E.: Synthetic worlds: The business and culture of online games. University of Chicago Press (2005)Google Scholar
  9. 9.
    Castronova, E.: On the research value of large games natural experiments in Norrath and Camelot. Games and Cult. 1(2), 163–186 (2006)CrossRefGoogle Scholar
  10. 10.
    Castronova, E., Williams, D., Shen, C., Ratan, R., Xiong, L., Huang, Y., Keegan, B.: As real as real? Macroeconomic behavior in a large-scale virtual world. New Media Soc. 11(5), 685–707 (2009)CrossRefGoogle Scholar
  11. 11.
    Davis, D.Z.: Gendered performance in virtual environments. Media Disparity: A Gender Battleground (2013): 133.Google Scholar
  12. 12.
    Einstein, A.: Out of my later years. Citadel Press (1956)Google Scholar
  13. 13.
    Fiske, D.W., Shweder R.A. (eds).: Metatheory in social science: Pluralisms and subjectivities. University of Chicago Press (1986)Google Scholar
  14. 14.
    Games, C.C.P.: Eve online. World Wide Web. (2003). Accessed 5 May 2014
  15. 15.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl., 11(1), 10–18 (2009)Google Scholar
  16. 16.
    Johnson, N.F., Xu, C., Zhao, Z., Ducheneaut, N., Yee, N., Tita, G., Hui, P.M.: Human group formation in online guilds and offline gangs driven by a common team dynamic. Phys. Rev. E. 79(6), 066117 (2009)Google Scholar
  17. 17.
    Keegan, B., Ahmad, M.A., Williams, D., Srivastava, J., Contractor, N.: Dark gold: Statistical properties of clandestine networks in massively multiplayer online games. In: Social Computing (SocialCom), 2010 IEEE Second International Conference on (pp. 201–208). IEEE (2010, August)Google Scholar
  18. 18.
    Kandel, D.B.: Homophily, selection, and socialization in adolescent friendships. Am. J. Sociol. 427–436 (1978).Google Scholar
  19. 19.
    Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D. Van Alstyne, M.: Life in the network: The coming age of computational social science. Science (New York) 323(5915), 721 (2009)Google Scholar
  20. 20.
    Narayanan, A., Shmatikov, V.: How to break anonymity of the Netflix prize data set. The University of Texas at Austin (2007)Google Scholar
  21. 21.
    Rogers, E.M., Bhowmik D.K.: Homophily-heterophily: Relational concepts for communication research.: Public. Opin. Quart. 34(4), 523–538 (1970)Google Scholar
  22. 22.
    Vapnik, V.: The Nature of 6tatistical Learning Theory. Data Min. Knowl. Discov. 6, 1–47Google Scholar
  23. 23.
    Warner, Stanley L.: Randomized response: A survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)Google Scholar
  24. 24.
    Williams, D., Ducheneaut, N., Xiong, L., Zhang, Y., Yee, N., Nickell, E.: From tree house to barracks the social life of guilds in world of Warcraft. Games Cult. 1(4), 338–361 (2006)CrossRefGoogle Scholar
  25. 25.
    Williams, D., Yee N., Caplan S.: Who plays, how much, and why? A behavioral player census of a virtual world. J. Comp. Mediat. Commun. 13(4) 993–1018 (2008)CrossRefGoogle Scholar
  26. 26.
    Williams, D.: The mapping principle, and a research framework for virtual worlds. Commun. Theory 20(4), 451–470 (2010)Google Scholar
  27. 27.
    Yee, N., Bailenson, J.: The proteus effect: The effect of transformed self-representation on behavior. Hum. Commun. Res. 33, 271–290 (2007)CrossRefGoogle Scholar
  28. 28.
    Zastrow, C., Kirst-Ashman K.K.: Understanding human behavior and the social environment. Cengage Learn. (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Muhammad Aurangzeb Ahmad
    • 1
    Email author
  • Cuihua Shen
    • 2
  • Jaideep Srivastava
    • 1
  • Noshir Contractor
    • 3
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.University of Texas at DallasRichardsonUSA
  3. 3.Northwestern UniversityEvanstonUSA

Personalised recommendations