Covert Persuasive Technologies: Bringing Subliminal Cues to Human-Computer Interaction

  • Oswald Barral
  • Gabor Aranyi
  • Sid Kouider
  • Alan Lindsay
  • Hielke Prins
  • Imtiaj Ahmed
  • Giulio Jacucci
  • Paolo Negri
  • Luciano Gamberini
  • David Pizzi
  • Marc Cavazza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8462)


The capability of machines to covertly persuade humans is both exciting and ethically concerning. In the present study we aim to bring subliminal masked stimulus paradigms to realistic environments, through Virtual Environments. The goal is to test if such paradigms are applicable to realistic setups while identifying the major challenges when doing so. We designed a study in which the user performed a realistic selection task in a virtual kitchen. For trials below one-second reaction time, we report significant effect of subliminal cues on the selection behavior. We conclude the study with a discussion of the challenges of bringing subliminal cueing paradigms to realistic HCI setups. Ethical concerns when designing covertly persuasive systems are discussed as well.


Covert persuasion subliminal cueing masked cues 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sidis, B.: The psychology of suggestion. D. Appleton, New York (1898)Google Scholar
  2. 2.
    Fox, R., Herrmann, J.: Stochastic properties of binocular rivalry alternations. Perception & Psychophysics 2, 432–436 (1967)CrossRefGoogle Scholar
  3. 3.
    Almeida, J., Mahon, B.Z., Nakayama, K., Caramazza, A.: Unconscious processing dissociates along categorical lines. Proceedings of the National Academy of Sciences of the United States of America 105, 15214–15218 (2008)CrossRefGoogle Scholar
  4. 4.
    Breitmeyer, B.G., Ganz, L.: Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychological Review 83, 1–36 (1976)CrossRefGoogle Scholar
  5. 5.
    Bouma, H.: Interaction effects in parafoveal letter recognition. Nature 226, 177–178 (1970)CrossRefGoogle Scholar
  6. 6.
    Levi, D.M.: Crowding–an essential bottleneck for object recognition: a mini-review. Vision Research 48, 635–654 (2008)CrossRefGoogle Scholar
  7. 7.
    Pelli, D.G., Tillman, K.A.: The uncrowded window of object recognition. Nature Neuroscience 11, 1129–1135 (2008)CrossRefGoogle Scholar
  8. 8.
    Whitney, D., Levi, D.M.: Visual crowding: a fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences 15, 160–168 (2011)CrossRefGoogle Scholar
  9. 9.
    Kouider, S., Berthet, V., Faivre, N.: Preference is biased by crowded facial expressions. Psychological Science 22(2), 184–189 (2011)CrossRefGoogle Scholar
  10. 10.
    Bonneh, Y.S., Cooperman, A., Sagi, D.: Motion-induced blindness in normal observers. Nature 411, 798–801 (2001)CrossRefGoogle Scholar
  11. 11.
    Neisser, U.: The control of information pickup in selective looking. In: Pick, A.D. (ed.) Perception and Its Development: A Tribute to Eleanor Gibson, pp. 201–219 (1979)Google Scholar
  12. 12.
    Simons, D.J., Chabris, C.F.: Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074 (1999)CrossRefGoogle Scholar
  13. 13.
    Rensink, R.A., O’Regan, J.K., Clark, J.J.: To See or not to See: The Need for Attention to Perceive Changes in Scenes. Psychological Science 8, 368–373 (1997)CrossRefGoogle Scholar
  14. 14.
    Simons, D.J., Levin, T.: Change blindness. Trends in Cognitive Sciences 1, 261–267 (1997)CrossRefGoogle Scholar
  15. 15.
    Raymond, J.E., Shapiro, K.L., Arnell, K.M.: Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance 18, 849–860 (1992)Google Scholar
  16. 16.
    Humphreys, G.W., Evett, L.J., Taylor, D.E.: Automatic phonological priming in visual word recognition. Memory Cognition 10, 576–590 (1982)CrossRefGoogle Scholar
  17. 17.
    Kunst-Wilson, W.R., Zajonc, R.B.: Affective discrimination of stimuli that cannot be recognized. Science 207, 557–558 (1980)CrossRefGoogle Scholar
  18. 18.
    Faivre, N., Berthet, V., Kouider, S.: Nonconscious influences from emotional faces: a comparison of visual crowding, masking, and continuous flash suppression. Frontiers in Psychology 3, 129 (2012)CrossRefGoogle Scholar
  19. 19.
    Bargh, J.A., Chen, M., Burrows, L.: Automaticity of social behavior: direct effects of trait construct and stereotype-activation on action. Journal of Personality and Social Psychology 71, 230–244 (1996)CrossRefGoogle Scholar
  20. 20.
    Devine, P.G.: Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality and Social Psychology 56, 5–18 (1989)CrossRefGoogle Scholar
  21. 21.
    Strahan, E.J., Spencer, S.J., Zanna, M.P.: Subliminal priming and persuasion: Striking while the iron is hot. Journal of Experimental Social Psychology 38, 556–568 (2002)CrossRefGoogle Scholar
  22. 22.
    Fogg, B.J.: A behavior model for persuasive design. In: Proceedings of the 4th International Conference on Persuasive Technology, vol. 40. ACM (2009)Google Scholar
  23. 23.
    Hogan, K., Speakman, J.: Covert Persuasion: Psychological Tactics and Tricks to Win the Game. Wiley (2006)Google Scholar
  24. 24.
    Ham, J., Midden, C., Beute, F.: Can ambient persuasive technology persuade unconsciously?: using subliminal feedback to influence energy consumption ratings of household appliances. In: Proceedings of the 4th International Conference on Persuasive Technology, vol. 29. ACM (2009)Google Scholar
  25. 25.
    Riener, A.: Subliminal persuasion and its potential for driver behavior adaptation. IEEE Transactions on Intelligent Transportation Systems 13(1), 71–80 (2012)CrossRefGoogle Scholar
  26. 26.
    Riener, A., Kempter, G., Saari, T., Revett, K.: Subliminal Communication in Human-Computer Interaction. Advances in Human-Computer Interaction (2011)Google Scholar
  27. 27.
    DeVaul, R.W., Pentland, A., Corey, V.R.: The memory glasses: subliminal vs. overt memory support with imperfect information. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC 2003), pp. 146–153 (2003)Google Scholar
  28. 28.
    Wallace, F.L., Flanery, J.M., Knezek, G.A.: The effect of subliminal help presentations on learning a text editor. Information Processing & Management 27(2), 211–218 (1991)CrossRefGoogle Scholar
  29. 29.
    Chalfoun, P., Frasson, C.: Subliminal cues while teaching: HCI technique for enhanced learning. Advances in Human-Computer Interaction 2011, 2 (2011)CrossRefGoogle Scholar
  30. 30.
    McNamara, A., Bailey, R., Grimm, C.: Improving search task performance using subtle gaze direction. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, pp. 51–56 (2008)Google Scholar
  31. 31.
    Bailey, R., McNamara, A., Sudarsanam, N., Grimm, C.: Subtle gaze direction. ACM Transactions on Graphics (TOG) 28(4), 100 (2009)CrossRefGoogle Scholar
  32. 32.
    Pizzi, D., Kosunen, I., Viganó, C., Polli, A.M., Ahmed, I., Zanella, D., Cavazza, M., Kouider, S., Freeman, J., Gamberini, L., Jacucci, G.: Incorporating subliminal perception in synthetic environments. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp 2012), pp. 1139–1144. ACM (2012)Google Scholar
  33. 33.
    Kouider, S., Dehaene, S.: Levels of processing during non-conscious perception: a critical review of visual masking. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1481), 857–875 (2007)CrossRefGoogle Scholar
  34. 34.
    Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., Schwarzbach, J.: Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences 100(10), 6275–6280 (2003)CrossRefGoogle Scholar
  35. 35.
    Dupoux, E., Gardelle, V.D., Kouider, S.: Subliminal speech perception and auditory streaming. Cognition 109(2), 267–273 (2008)CrossRefGoogle Scholar
  36. 36.
    Greenwald, A.G., Draine, S.C., Abrams, R.L.: Three cognitive markers of unconscious semantic activation. Science 273(5282), 1699–1702 (1996)CrossRefGoogle Scholar
  37. 37.
    Macmillan, N.A., Creelman, C.D.: Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates, Mahwah (2004)Google Scholar
  38. 38.
    Stanislaw, H., Todorov, N.: Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers 31(1), 137–149 (1999)CrossRefGoogle Scholar
  39. 39.
    Cohen, J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, London (1998)Google Scholar
  40. 40.
    Winkielman, P., Berridge, K.C., Wilbarger, J.L.: Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Personality and Social Psychology Bulletin 31(1), 121–135 (2005)CrossRefGoogle Scholar
  41. 41.
    Aranyi, G., Kouider, S., Lindsay, A., Prins, H., Ahmed, I., Jacucci, G., Negri, P., Gamberini, L., Pizzi, D., Cavazza, M.: Subliminal cueing of selection behavior in a virtual environment. Presence: Teleoperators and Virtual Environments (in press, 2014)Google Scholar
  42. 42.
    Fogg, B.J.: Persuasive technology: using computers to change what we think and do. Ubiquity 5 (2002)Google Scholar
  43. 43.
    Smids, J.: The voluntariness of persuasive technology. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012. LNCS, vol. 7284, pp. 123–132. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  44. 44.
    Spahn, A.: And Lead Us (Not) into Persuasion…? Persuasive Technology and the Ethics of Communication. Science and Engineering Ethics 18(4), 633–650 (2012)CrossRefGoogle Scholar
  45. 45.
    Torning, K., Oinas-Kukkonen, H.: Persuasive system design: state of the art and future directions. In: Proceedings of the 4th International Conference on Persuasive Technology, vol. 30. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Oswald Barral
    • 1
  • Gabor Aranyi
    • 2
  • Sid Kouider
    • 3
  • Alan Lindsay
    • 2
  • Hielke Prins
    • 3
  • Imtiaj Ahmed
    • 1
  • Giulio Jacucci
    • 1
  • Paolo Negri
    • 4
  • Luciano Gamberini
    • 4
  • David Pizzi
    • 2
  • Marc Cavazza
    • 2
  1. 1.Helsinki Institute for Information Technology (HIIT), Department of Computer ScienceUniversity of HelsinkiFinland
  2. 2.School of ComputingTeesside UniversityUK
  3. 3.Laboratoire de Sciences Cognitives et Psycholinguistique (LSCP)École Normale SupérieureFrance
  4. 4.Department of General PsychologyUniversity of PadovaItaly

Personalised recommendations