Advertisement

Process Characterization

  • Linda SansoniEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The complete characterization of quantum devices is a fundamental task of quantum information science. The characterization of single- and two-qubit devices is particularly important, in fact single-qubit gates and the two-qubit controlled-NOT gates are the two building blocks of a quantum computer [1].

References

  1. 1.
    I.L. Chuang, M.A. Nielsen, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  2. 2.
    A.G. Kofman, A.N. Korotov, Two-qubit decoherence mechanisms revealed via quantum process tomography. Phys. Rev. A 80, 042103 (2009)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Mohseni, A.T. Rezakhani, D.A. Lidar, Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    I.L. Chuang, M.A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt 44, 2455 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    G.M. D’Ariano, P.L. Presti, Imprinting complete information about a quantum channel on its output state. Phys. Rev. Lett. 91, 047902 (2003)Google Scholar
  6. 6.
    P.P. Rohde, G.J. Pryde, J.L. O’Brien, T.C. Ralph, Quantum-gate characterization in an extended hilbert space. Phys. Rev. A 72, 032306 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    M. Mohseni, D.A. Lidar, Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. White, A. Gilchrist, G. Pryde, J.L. O’Brien, M.J. Bremner, N. Langford, Measuring two-qubit gates. J. Opt. Soc. America B 24, 172 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Altepeter, D. Branning, E. Jeffrey, T.C. Wei, P.G. Kwiat, R.T. Thew, J.L. O’Brien, M.A. Nielsen, A.G. White, Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Howard, J. Twamley, C. Wittman, T. Gaebel, F. Jelezko, J. Wrachtrup, Quantum process tomography of a single solid state qubit. New J. Phys. 8, 33 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    F. Sciarrino, C. Sias, M. Ricci, F.D. Martini, Realization of universal optimal quantum machines by projective operators and stochastic maps. Phys. Rev. A 70, 052305 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Childs, I.L. Chuang, D.W. Leung, Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M.W. Mitchell, C.W. Ellenor, S. Schneider, A.M. Steinberg, Diagnosis, prescription, and prognosis of a Bell-state filter by quantum process tomography. Phys. Rev. Lett. 91, 120402 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    J.F. Poyatos, J.I. Cirac, P. Zoller, Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. O’Brien, G.J. Pryde, A. Gilchrist, D.F.V. James, N.K. Langford, T.C. Ralph, A.G. White, Quantum process tomography of a Controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004)CrossRefGoogle Scholar
  16. 16.
    N.K. Langford, T.J. Weinhold, R. Prevedel, K.J. Resch, A. Gilchrist, J.L. O’Brien, G.J. Pryde, A.G. White, Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    N. Kiesel, C. Schmid, U. Weber, R. Ursin, H. Weinfurter, Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    R. Okamoto, J.L. O’Brien, H.F. Hofmann, T. Nagata, K. Sasaki, S. Takeuchi, An entanglement filter. Science 323, 483 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T. Nagata, R. Okamoto, J.L. O’Brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316, 726 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, New high-intensity source of polarization entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, Experimental quantum process tomography of non-trace-preserving maps. Phys. Rev. A 82, 042307 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Jezek, J. Fiurasek, Z. Hradil, Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    T.O. Maciel, R.O. Vianna, Optimal estimation of quantum processes using incomplete information: variational quantum process tomography. Quantum Inf. Comput. 12, 0442 (2012)Google Scholar
  25. 25.
    T.O. Maciel, A.T. Cesário, R.O. Vianna, Variational quantum tomography with incomplete information by means of semidefinite programs. Int. J. Mod. Phys. C 22, 1361 (2011)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    M. Silva, E. Magesan, D.W. Kribs, J. Emerson, Scalable protocol for identification of correctable codes. Phys. Rev. A 78, 012347 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    A. Bendersky, F. Pastawski, J.P. Paz, Selective and efficient quantum process tomography. Phys. Rev. A 80, 032116 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Shabani, R.L. Kosut, M. Mohseni, H. Rabitz, M.A. Broome, M.P. Almeida, A. Fedrizzi, A.G. White, Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2000)Google Scholar
  30. 30.
    J.F. Sturm, Sedumi: http://fewcal.kub.nl/sturm/softwares/sedumi.html j. löfberg, YALMIP : A toolbox for modeling and optimization in MATLAB, proceedings of the CACSD conference, 2004, taipei, taiwan, (unpublished) http://control.ee.ethz.ch/~joloef/yalmip.php, Optim. Meth. Softw. 11, 625 (1999)
  31. 31.
    E. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    V. Buzek, Quantum tomography from incomplete data via MaxEnt principle. Lect. Notes Phys. 649, 189 (2004)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    G. Lima, E.S. Gómez, A. Vargas, R.O. Vianna, C. Saavedra, Fast entanglement detection for unknown states of two spatial qutrits. Phys. Rev. A 82, 012302 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    J. Filgueiras, T. Maciel, R. Vianna, R. Auccaise, R. Sarthour, I Oliveira, Experimental implementation of a NMR entanglement witness. Quantum Inf. Process 11, 1883 (2012)Google Scholar
  35. 35.
    R.O. Vianna, A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, F. Sciarrino, G. Milani, P. Mataloni, Variational quantum process tomography of two-qubit maps. Phys. Rev. A 87, 032304 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations