Advertisement

Quantum Information

  • Linda SansoniEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Quantum information deals with the information processing tasks that can be accomplished by using the laws of quantum mechanics. Its aim is to develop suitable strategies in particular for quantum computation and quantum communication, but also for quantum metrology and quantum simulation. In this chap.  1 briefly provide an introduction to the wide range of topics concerning quantum information and recall some basic theoretical elements, to which I will refer in this thesis.

References

  1. 1.
    R. Feynman, Simulating physics with computers. Int. J Theor. Phys. 21, 476 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Potocek, A. Gabris, T. Kiss, I. Jex, Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    I.L. Chuang, M.A. Nielsen, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  4. 4.
    A. Einstein, B. Podolski, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 77 (1935)ADSCrossRefGoogle Scholar
  5. 5.
    G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information, vol. I, Basic Concepts (World Scientific, Singapore, 2004)Google Scholar
  6. 6.
    G. Benenti, G. Casati, G. Strini, Principles of Quantum Computation and Information, vol. II, Basic Tools and Special Topics (World Scientific, Singapore, 2007)Google Scholar
  7. 7.
    R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D. Boschi, S. Branca, F.D. Martini, L. Hardy, S. Popescu, Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Bennet, G. Brassard, Public key distribution and coin tossing, in Proceedings of IEEE International Conference Proceedings of IEEE International Conference on Computers Systems and Signal Processing, p. 175, Bangalore, India (1984)Google Scholar
  14. 14.
    L.M.V. Giovannetti, S. Lloyd, Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    P. Kok, S.L. Braunstein, J.P. Dowling, Quantum lithography, entanglement and Heisenberg-limited parameter estimation. J. Opt. B: Quantum Semiclassical Opt. 6, S811 (2003)CrossRefGoogle Scholar
  16. 16.
    R. Loudon, Quantum Theory of Light (Oxford University Press, Oxford, 2000)Google Scholar
  17. 17.
    J.J. Sakurai, Meccanica Quantistica Moderna (Zanichelli, 2003)Google Scholar
  18. 18.
    J. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)Google Scholar
  19. 19.
    A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    K. Kraus, States, Effects and Operations Fundamental Notions of Quantum Theory (Academic Press, 1983)Google Scholar
  23. 23.
    D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    G. Stokes, On the composition and resolution of polarized light from different sources. Trans. Cambridge Philos. Soc. 9, 399–416 (1852)Google Scholar
  27. 27.
    U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 1997)Google Scholar
  28. 28.
    I.L. Chuang, M.A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    A. Jamiolkowski, Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275 (1972)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    M. Raginsky, A fidelity measure for quantum channels. Phys. Lett. A 290, 11 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    M.A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 303, 249 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    A. Gilchrist, N.K. Langford, M.A. Nielsen, Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    G. Wang, M. Ying, Unambiguous discrimination among quantum operations. Phys. Rev. A 73, 042301 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations