Advertisement

Conclusion

  • Linda SansoniEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Within the context of quantum information, scalability is one of the most challenging tasks. Since integrated technology aims to fulfill this requirement, in the last years the ability to realize integrated devices to be employed in quantum information protocols represented an intriguing issue. Among the various platforms adopted for quantum information experiments—such as atoms, ions, quantum dots, single photons—, the photonic implementation has seen an increasing manufacturing of devices realized by means of different fabrication techniques.

Keywords

Quantum Walk Anderson Localization CNOT Gate Quantum Simulation Quantum Process Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Lobino, J. O’Brien, Entangled photons on a chip. News and Views on Nature 469, 43 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, Experimental quantum process tomography of non-trace-preserving maps. Phys. Rev. A 82, 042307 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 476 (1982)CrossRefMathSciNetGoogle Scholar
  6. 6.
    V. Potocek, A. Gabris, T. Kiss, I. Jex, Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, P.J. Mosley, I. Jex, C. Silberhorn, Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. D. Nicola, F. Sciarrino, and P. Mataloni, Anderson localization of entangled photons in an integrated quantum walk, Nat. Photonics 7, 322–328 (2013)Google Scholar
  10. 10.
    S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Proceeding STOC’11 Proceedings of the forty-third annual ACM symposium on Theory of computing (2011), preprint at http://arxiv.org/abs/1011.3245 (2010)
  11. 11.
    N. Spagnolo, C. Vitelli, L. Sansoni, E. Maiorino, P. Mataloni, F. Sciarrino, D. Brod, E. Galvao, A. Crespi, R. Ramponi, R. Osellame, General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations