Advertisement

Quantum Transport in Presence of Disorder

  • Linda SansoniEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Waves may fail to propagate in random media. First predicted for quantum particles in the presence of a disordered potential, Anderson localization has been observed also in classical acoustics, electromagnetism and optics. Here, I report the observation of Anderson localization of pairs of entangled photons in a two-particle discrete quantum walk affected by position dependent disorder. The quantum walk on a disordered lattice is realized by starting from an integrated array of interferometersfabricated in glass by femtosecond laser writing and using a novel technique to introduce a controlled phase shift into each unit mesh of the network. Polarization entanglement is exploited to simulate the different symmetries of the two-walker system.

Keywords

Femtosecond Laser Quantum Walk Anderson Localization Static Disorder Single Photon State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    N.F. Mott, Electrons in disordered structures. Adv. Phys. 16, 49 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    P.A. Lee, T.V. Ramakrishnan, Disordered electron systems. Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    E. Abrahams, 50 Years of Anderson Localization (World Scientific, Singapore, 2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453, 895 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. ClÈment, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390, 671 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    C. Conti, A. Fratalocchi, Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Pertsch, J.K.U. Peschel, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, F. Lederer, Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    T. Schwartz, G. Bartal, S. Fishman, M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 466, 52 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Broome, A. Fedrizzi, B.P. Lanyon, I. Kassal, A. Aspuru-Guzik, A.G. White, Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, P.J. Mosley, I. Jex, C. Silberhorn, Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. Störzer, P. Gross, C.M. Aegerter, G. Maret, Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96, 063904 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Omar, N. Paunković, L.S.S. Bose, Quantum walk on a line with two entangled particles. Phys. Rev. A 74, 042304 (2006)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    C. Beenakker, J. Venderbos, M. van Exter, Two-photon speckle as a probe of multi-dimensional entanglement. Phys. Rev. Lett. 102, 193601 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Lahini, Y. Bromberg, D.N. Christodoulides, Y. Silberberg, Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Bromberg, Y. Lahini, R. Morandotti, Y. Silberberg, Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D. Shepelyansky, Coherent propagation of two interacting particles in a random potential. Phys. Revi. Lett. 73, 2607 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)Google Scholar
  22. 22.
    J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3, 687 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    A. Laing, A. Peruzzo, A. Politi, M.R. Verde, M. Halder, T.C. Ralph, M.G. Thompson, J.L. O’Brien, High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211108 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. O’Brien, Quantum walks of correlated photons. Science 329, 1500 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J.C.F. Matthews, K. Poulios, J.D.A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Worhoff, M.G. Thompson, J.L. O’Brien, Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions, Scientific Report 3, 1539 (2013)Google Scholar
  30. 30.
    J.O. Owens, M.A. Broome, D.N. Biggerstaff, M.E. Goggin, A. Fedrizzi, T. Linjordet, M. Ams, G.D. Marshall, J. Twamley, M.J. Withford, A.G. White, Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13, 075003 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    B.J. Smith, D. Kundys, N. Thomas-Peter, P.G.R. Smith, I.A. Walmsley, Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    A. Crespi, M. Lobino, J.C.F. Matthews, A. Politi, C.R. Neal, R. Ramponi, R. Osellame, J.L. O’Brien, Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100, 233704 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, Topics in Applied Physics, vol. 123. (Springer, Berlin, 2012)Google Scholar
  35. 35.
    R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A Pure Appl. Opt. 11, 049801 (2009)Google Scholar
  37. 37.
    A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F.D. Nicola, F. Sciarrino, P. Mataloni, Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322-328 (2013)Google Scholar
  38. 38.
    D. Molinari, A. Fratalocchi, Route to strong localization of light: the role of disorder. Opt. Express 20, 18156 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    M. Terraneo, D.L. Shepelyansky, Dynamical localization and repeated measurements in a quantum computation process. Phys. Rev. Lett. 92, 037902 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Yin, D.E. Katsanos, S.N. Evangelou, Quantum walks on a random environment. Phys. Rev. A 77, 022302 (2008)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    S. Havlin, D. Ben-Avraham, Diffusion in disordered media. Adv. Phys. 51, 187 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    B. Aguer, S. de Bièvre, P. Lafitte, P. Parris, Classical motion in force fields with short range correlations. J. Stat. Phys. 138, 780 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Y. Krivolapov, L. Levi, S. Fishman, M. Segev, M. Wilkinson, Enhanced transport when Anderson localization is destroyed. Arxiv:1110.3024v3 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations