Advertisement

Preamble

  • Linda SansoniEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the last few decades the emergence of a new field of research dealing with information at the quantum level has led to a “second quantum revolution”, that promises new technologies whose design is based on the principles of quantum mechanics.

Keywords

Femtosecond Laser Quantum Communication Quantum Walk Anderson Localization Discrete Time Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 476 (1982)CrossRefMathSciNetGoogle Scholar
  2. 2.
    C.H. Bennet, G. Brassard, Public key distribution and coin tossing, in Proceedings of IEEE International Conference Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, p. 175 (1984)Google Scholar
  3. 3.
    V. Potocek, A. Gabris, T. Kiss, I. Jex, Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    B.E.A. Saleh, M.C. Teich, in Fundamentals of Photonics (Wiley, Nw York, 1991)Google Scholar
  6. 6.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, P. Mataloni, Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011)Google Scholar
  9. 9.
    I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, Experimental quantum process tomography of non-trace-preserving maps. Phys. Rev. A 82, 042307 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    P. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  11. 11.
    L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Sansoni, F. De Nicola, F. Sciarrino, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Bosonic and fermionic discrete-time quantum walk on integrated optics. J. Comput. Theor. Nanosci. 10, 1662 (2013)CrossRefGoogle Scholar
  13. 13.
    J.C.F. Matthews, M.G. Thompson, Quantum optics: an entangled walk of photons. News Views Nat. 484, 47 (2012)Google Scholar
  14. 14.
    A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F.D. Nicola, F. Sciarrino, P. Mataloni, Anderson localization of entangled photons in an integrated quantum walk. Nat. Photonics 7, 322–328 (2013)Google Scholar
  15. 15.
    T.O. Maciel, A.T. Cesário, R.O. Vianna, Variational quantum tomography with incomplete information by means of semidefinite programs. Int. J. Modern Phys. C 22, 1361 (2011)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    R.O. Vianna, A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, F. Sciarrino, G. Milani, P. Mataloni, Variational quantum process tomography of two-qubit maps. Phys. Rev. A 87, 032304 (2013)Google Scholar
  17. 17.
    F. De Nicola, L. Sansoni, A. Crespi, R. Ramponi, R. Osellame, V. Giovannetti, R. Fazio, P. Mataloni, F. Sciarrino, Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk. Phys. Rev. A 89, 032322 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PaderbornPaderbornGermany

Personalised recommendations