Skip to main content

Introduction

  • Chapter
  • First Online:
  • 547 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Understanding the interaction between light and matter is fundamental to many processes in physics. This chapter is a general background to this thesis, and serves to introduce some of the key elements of this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.nobelprize.org/nobel_prizes/physics/laureates/2012

References

  1. R. Miller et al., Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B 38, S551 (2005)

    Article  ADS  Google Scholar 

  2. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  3. S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (OUP, Oxford, 2006)

    Book  Google Scholar 

  4. R. J. Bettles and C. S. Adams, Private, Communication, 2013.

    Google Scholar 

  5. L. Chomaz, L. Corman, T. Yefsah, R. Desbuquois, J. Dalibard, Absorption imaging of a quasi-two-dimensional gas: a multiple scattering analysis. New J. Phys. 14, 055001 (2012)

    Article  ADS  Google Scholar 

  6. S. Kühn, U. Hȧkanson, L. Rogobete, V. Sandoghdar, Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  7. J.D. Pritchard et al., Cooperative Atom-Light Interaction in a Blockaded Rydberg Ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    Article  ADS  Google Scholar 

  8. Y.O. Dudin, A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887 (2012)

    Article  ADS  Google Scholar 

  9. J. Javanainen, J. Ruostekoski, Y. Li, S.-M. Yoo, Shifts of a Resonance Line in a Dense Atomic Sample. Physical Review Letters 112, 113603 (2014)

    Article  ADS  Google Scholar 

  10. M. Gross, S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  11. M.O. Scully, A.A. Svidzinsky, The super of superradiance. Science 325, 1510 (2009)

    Article  Google Scholar 

  12. R. Dicke, Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  13. C. Hettich et al., Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385 (2002)

    Article  Google Scholar 

  14. M. Saffman, T. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

    Google Scholar 

  15. R. Monshouwer, M. Abrahamsson, F. van Mourik, R. van Grondelle, Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems. J. Phys. Chem. B 101, 7241 (1997)

    Article  Google Scholar 

  16. J.L. Herek, W. Wohlleben, R.J. Cogdell, D. Zeidler, M. Motzkus, Quantum control of energy flow in light harvesting. Nature 417, 533 (2002)

    Article  ADS  Google Scholar 

  17. G.S. Engel et al., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  18. G. Panitchayangkoon et al., Direct evidence of quantum transport in photosynthetic light-harvesting complexes., P. Natl. Acad. Sci. 108, 20908 (2011).

    Google Scholar 

  19. S. Inouye, Superradiant Rayleigh Scattering from a Bose-Einstein Condensate. Science 285, 571 (1999)

    Article  Google Scholar 

  20. S.E. Harris, J.E. Field, A. Imamoǧlu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  21. K. J. Boller, A. Imamoǧlu, and S. E. Harris, Observation of Electromagnetically Induced Transparency, Phys. Rev. Lett. 66 (1991).

    Google Scholar 

  22. C. Carr, R. Ritter, K. J. Weatherill, and C. S. Adams, Cooperative non-equilibrium phase transition in a dilute thermal atomic gas, arxiv.org, 1302.6621 (2013), arXiv:1302.6621v1.

  23. D. A. Steck, Rubidium 85 D Line Data, (2009).

    Google Scholar 

  24. D.K. Belashchenko, Molecular-dynamics simulation of the high-pressure properties of rubidium. High Temperature 48, 646 (2010)

    Article  Google Scholar 

  25. C.J. Pethick, H. Smith, Bose-Einstein condensation in dilute gases (CUP, Cambridge, 2001)

    Book  Google Scholar 

  26. J. Woerdman, M.F.H. Schuurmans, Spectral narrowing of selective reflection from sodium vapour. Opt. Commun. 14, 248 (1975)

    Article  ADS  Google Scholar 

  27. M.F.H. Schuurmans, Spectral narrowing of selective reflection. J. Phys. (Paris) 37, 469 (1976)

    Article  Google Scholar 

  28. P. Siddons, C.S. Adams, I.G. Hughes, Off-resonance absorption and dispersion in vapours of hot alkali-metal atoms. J. Phys. B 42, 175004 (2009)

    Article  ADS  Google Scholar 

  29. R. Dicke, The Effect of Collisions upon the Doppler Width of Spectral Lines. Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  30. R. Romer, R. Dicke, New Technique for High-Resolution Microwave Spectroscopy. Phys. Rev. 99, 532 (1955)

    Article  ADS  Google Scholar 

  31. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, M. Ducloy, Coherent Doppler narrowing in a thin vapor cell: Observation of the Dicke regime in the optical domain. Phys. Rev. A 57, R3169 (1998)

    Article  ADS  Google Scholar 

  32. S. Knappe, V. Velichansky, H.G. Robinson, J. Kitching, L. Hollberg, Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers. Rev. Sci. Instr. 74, 3142 (2003)

    Article  ADS  Google Scholar 

  33. L.-A. Liew et al., Microfabricated alkali atom vapor cells. Appl. Phys. Lett. 84, 2694 (2004)

    Article  ADS  Google Scholar 

  34. S. Knappe et al., A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460 (2004)

    Article  ADS  Google Scholar 

  35. M. Pellaton, C. Affolderbach, Y. Pétremand, N. de Rooij, G. Mileti, Study of laser-pumped double-resonance clock signals using a microfabricated cell. Phys. Scr. T149, 014013 (2012)

    Article  ADS  Google Scholar 

  36. W.C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, J. Kitching, Miniature atomic magnetometer integrated with flux concentrators. Appl. Phys. Lett. 94, 023502 (2009)

    Article  ADS  Google Scholar 

  37. S. Li, P. Vachaspati, D. Sheng, N. Dural, M.V. Romalis, Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell. Phys. Rev. A 84, 061403 (2011)

    Article  ADS  Google Scholar 

  38. D. Sheng, S. Li, N. Dural, M.V. Romalis, Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells. Phys. Rev. Lett. 110, 160802 (2013)

    Article  ADS  Google Scholar 

  39. A. Sargsyan et al., High contrast D1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell. Appl. Phys. B 105, 767 (2011)

    Article  ADS  Google Scholar 

  40. L. Weller et al., Optical isolator using an atomic vapor in the hyperfine Paschen-Back regime. Opt. Lett. 37, 3405 (2012)

    Article  ADS  Google Scholar 

  41. H. Kübler, J.P. Shaffer, T. Baluktsian, R. Löw, T. Pfau, Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nature Photon. 4, 112 (2010)

    Article  ADS  Google Scholar 

  42. M. M. Muller et al., Room temperature Rydberg Single Photon Source, arXiv.org, 1212.2811 (2012), arXiv:1212.2811v1.

Publications Arising from this Work

  1. J. Keaveney et al., Cooperative Lamb Shift in an Atomic Vapor Layer of Nanometer Thickness. Phys. Rev. Lett. 108, 173601 (2012)

    Article  ADS  Google Scholar 

  2. J. Keaveney, I.G. Hughes, A. Sargsyan, D. Sarkisyan, C.S. Adams, Maximal Refraction and Superluminal Propagation in a Gaseous Nanolayer. Phys. Rev. Lett. 109, 233001 (2012)

    Article  ADS  Google Scholar 

  3. J. Keaveney et al., Optical transmission through a dipolar layer, arxiv.org, 1109.3669v2 (2011), arXiv:1109.3669v2.

Related Publications

  1. A. Sargsyan, D. Sarkisyan, U. Krohn, J. Keaveney, C.S. Adams, Effect of buffer gas on electromagnetically induced transparency in a ladder system using thermal rubidium vapor. Phys. Rev. A 82, 045806 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Keaveney .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keaveney, J. (2014). Introduction. In: Collective Atom–Light Interactions in Dense Atomic Vapours. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07100-8_1

Download citation

Publish with us

Policies and ethics