Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 524 Accesses

Abstract

More than two centuries ago, a desire to understand energy transformation processes in nature had given birth to the classical thermodynamics [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callen, H. (2006). Thermodynamics and an Introduction to thermostatistics. Student (edn.), Wiley. ISBN 9788126508129. http://books.google.cz/books?id=uOiZB_2y5pIC.

  2. Müller, I. (2007). A history of thermodynamics: The doctrine of energy and entropy. London: Springer. ISBN 9783540462279. http://books.google.cz/books?id=u13KiGlz2zcC.

  3. Van Wylen, G., Sonntag, R., & Borgnakke, C. (1994). Fundamentals of classical thermodynamics. Number sv. 1 in Fundamentals of Classical Thermodynamics, Wiley. ISBN 9780471593959. http://books.google.de/books?id=IeIeAQAAIAAJ.

  4. Carnot, S. (2012). Reflections on the motive power of fire: And other papers on the second law of thermodynamics. Dover books on physics, Dover Publications. ISBN 9780486174549. http://www.google.de/books?id=YdpQAQAAQBAJ.

  5. Gibbs, J. (2010). Elementary principles in statistical mechanics: Developed with especial reference to the rational foundation of thermodynamics. Cambridge Library Collection—Mathematics, Cambridge University Press. ISBN 9781108017022. http://www.google.cz/books?id=7VbC-15f0SkC.

  6. Huang, K. (1963). Statistical mechanics. New York: Wiley. http://books.google.cz/books?id=MolRAAAAMAAJ.

  7. De Groot, S., & Mazur, P. (2013). Non-equilibrium thermodynamics. Dover Books on Physics, Dover Publications. ISBN 9780486153506. http://books.google.cz/books?id=mfFyG9jfaMYC.

  8. Demirel, Y. (2013). Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems. Elsevier Science. ISBN 9780444595812. http://books.google.cz/books?id=WSmcAAAAQBAJ.

  9. Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6), 570–586. doi:10.1143/JPSJ.12.570, http://journals.jps.jp/doi/pdf/10.1143/JPSJ.12.570., http://journals.jps.jp/doi/abs/10.1143/JPSJ.12.570.

  10. Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical Review, 32, 110–113. doi:10.1103/PhysRev.32.110, http://link.aps.org/doi/10.1103/PhysRev.32.110.

  11. Callen, H. B., & Welton, T. A. (1951). Irreversibility and generalized noise. Physical Review, 83, 34–40. doi:10.1103/PhysRev.83.34, http://link.aps.org/doi/10.1103/PhysRev.83.34.

  12. Green, M. S. (1954). Markoff random processes and the statistical mechanics of time-dependent phenomena. II. irreversible processes in fluids. The Journal of Chemical Physics, 22(3), 398–413. http://dx.doi.org/10.1063/1.1740082, http://scitation.aip.org/content/aip/journal/jcp/22/3/10.1063/1.1740082.

  13. Kubo, R. (1966). The fluctuation-dissipation theorem. Reports on Progress in Physics, 29(nr. 1), 255. http://stacks.iop.org/0034-4885/29/i=1/a=306.

  14. Kondepudi, D., & Prigogine, I. (1998). Modern thermodynamics: From heat engines to dissipative structures. Wiley. ISBN 9780471973935. http://books.google.de/books?id=kxcvAQAAIAAJ.

  15. Prigogine, I. (1955). Thermodynamics of irreversible processes. Thomas. http://books.google.de/books?id=DEQLPwAACAAJ.

  16. Onsager, L. (1931). Reciprocal relations in irreversible processes. I. Physical Review, 37, 405–426. doi:10.1103/PhysRev.37.405, http://link.aps.org/doi/10.1103/PhysRev.37.405.

  17. Schliwa, M., & Woehlke, G. (2003). Molecular motors. Nature, 422, 759–765. doi:10.1038/nature01601.

    Article  ADS  Google Scholar 

  18. Schliwa, M. (2006). Molecular motors. Wiley. ISBN 9783527605651. http://books.google.cz/books?id=6PJMfQlIS1kC.

  19. Reimann, P. (2002). Brownian motors: Noisy transport far from equilibrium. Physics Reports, 361(2–4), 7–265. ISSN 0370–1573, http://dx.doi.org/10.1016/S0370-1573(01)00081-3, http://www.sciencedirect.com/science/article/pii/S0370157301000813.

  20. Kornberg, A., & Baker, T. (2005). Dna replication. University Science Books. ISBN 9781891389443. http://books.google.cz/books?id=KDsubusF0YsC.

  21. Tackett, A. J., Morris, P. D., Dennis, R., et al. (2001). Unwinding of unnatural substrates by a DNA helicase. Biochemistry, 40(2), 543–548. doi:10.1021/bi002122+,pMID:11148049, http://pubs.acs.org/doi/pdf/10.1021/bi002122%2B, http://pubs.acs.org/doi/abs/10.1021/bi002122%2B.

  22. Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491–505. http://dx.doi.org/10.1038/nmeth.1218.

  23. Cohen, A. E. (2005). Control of nanoparticles with Arbitrary two-dimensional force fields. Physical Review Letters, 94, 118102. doi:10.1103/PhysRevLett.94.118102, http://link.aps.org/doi/10.1103/PhysRevLett.94.118102.

  24. Blickle, V., Speck, T., Helden, L., et al. (2006). Thermodynamics of a colloidal particle in a time-dependent nonharmonic potential. Physical Review Letters, 96, 070603. doi:10.1103/PhysRevLett.96.070603, http://link.aps.org/doi/10.1103/PhysRevLett.96.070603.

  25. Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(nr. 12), 126001. http://stacks.iop.org/0034-4885/75/i=12/a=126001.

  26. Van Kampen, N. (2011). Stochastic processes in physics and chemistry. North-Holland Personal Library, Elsevier Science. ISBN 9780080475363. http://books.google.cz/books?id=N6II-6HlPxEC.

  27. Gillespie, D. T. (1992). Markov processes: An introduction for physical scientist. San Diego: Academic press, Inc.

    Google Scholar 

  28. Feller, W. (2008). An introduction to probability theory and its applications, (2nd ed.). Number 2 in Wiley publication in mathematical statistics, Wiley. ISBN 9788126518067. http://books.google.de/books?id=OXkg-LvRgjUC.

  29. Feller, W. (1950). An introduction to probability theory and its applications. Number 1 in Wiley mathematical statistics series, Wiley. http://books.google.cz/books?id=x9sgAAAAMAAJ.

  30. Klages, R. (2007). Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics. Advanced series in nonlinear dynamics, World Scientific. ISBN 9789812565075. http://books.google.de/books?id=nwpiaeOMKmcC.

  31. Sevick, E., Prabhakar, R., Williams, S. R., et al. (2008). Fluctuation theorems. Annual Review of Physical Chemistry, 59(1), 603–633. doi:10.1146/annurev.physchem.58.032806.104555, http://www.annualreviews.org/doi/pdf/10.1146/annurev.physchem.58.032806.104555.

  32. Ritort, F. (2008). Advances in Chemical Physics, Volume 137, chapter Nonequilibrium Fluctuations in Small Systems: From Physics to Biology (pp. 31–123). Wiley. ISBN 9780470238080. doi:10.1002/9780470238080.ch2, http://dx.doi.org/10.1002/9780470238080.ch2.

  33. Evans, D. J., Cohen, E. G. D., & Morriss, G. P. (1993). Probability of second law violations in shearing steady states. Physical Review Letters, 71, 2401–2404. doi:10.1103/PhysRevLett.71.2401, http://link.aps.org/doi/10.1103/PhysRevLett.71.2401.

  34. Gallavotti, G., & Cohen, E. G. D. (1995). Dynamical ensembles in nonequilibrium statistical mechanics. Physical Review Letters, 74, 2694–2697. doi:10.1103/PhysRevLett.74.2694, http://link.aps.org/doi/10.1103/PhysRevLett.74.2694.

  35. Kurchan, J. (1998). Fluctuation theorem for stochastic dynamics. Journal of Physics A: Mathematical and General, 31(nr. 16), 3719. http://stacks.iop.org/0305-4470/31/i=16/a=003.

  36. Lebowitz, J., & Spohn, H. (1999). A gallavotti-cohen-type symmetry in the large deviation functional for stochastic dynamics. Journal of Statistical Physics, 95(1–2), 333–365. ISSN 0022–4715, doi:10.1023/A:1004589714161, http://dx.doi.org/10.1023/A%3A1004589714161.

  37. Evans, D. J., & Searles, D. J. (1994). Equilibrium microstates which generate second law violating steady states. Physical Review E, 50, 1645–1648. doi:10.1103/PhysRevE.50.1645, http://link.aps.org/doi/10.1103/PhysRevE.50.1645.

  38. Jarzynski, C. (1997). Nonequilibrium equality for free energy differences. Physical Review Letters, 78, 2690–2693. doi:10.1103/PhysRevLett.78.2690, http://link.aps.org/doi/10.1103/PhysRevLett.78.2690.

  39. Jarzynski, C. (1997). Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Physical Review E, 56, 5018–5035. doi:10.1103/PhysRevE.56.5018, http://link.aps.org/doi/10.1103/PhysRevE.56.5018.

  40. Crooks, G. (1998). Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems. Journal of Statistical Physics, 90(5–6), 1481–1487. ISSN 0022–4715. doi:10.1023/A:1023208217925, http://dx.doi.org/10.1023/A%3A1023208217925.

  41. Crooks, G. E. (1999). Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physical Review E, 60, 2721–2726. doi:10.1103/PhysRevE.60.2721, http://link.aps.org/doi/10.1103/PhysRevE.60.2721.

  42. Crooks, G. E. (2000). Path-ensemble averages in systems driven far from equilibrium. Physical Review E, 61, 2361–2366. doi:10.1103/PhysRevE.61.2361, http://link.aps.org/doi/10.1103/PhysRevE.61.2361.

  43. Hummer, G., & Szabo, A. (2001). Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proceedings of the National Academy of Sciences, 98(7), 3658–3661. doi:10.1073/pnas.071034098, http://www.pnas.org/content/98/7/3658.full.pdf+html, http://www.pnas.org/content/98/7/3658.abstract.

  44. Braun, O., Hanke, A., & Seifert, U. (2004). Probing molecular free energy landscapes by periodic loading. Physical Review Letters, 93, 158105. doi:10.1103/PhysRevLett.93.158105, http://link.aps.org/doi/10.1103/PhysRevLett.93.158105.

  45. Collin, D., Ritort, F., Jarzynski, C., et al. (2005). Verification of the crooks fluctuation theorem and recovery of RNA folding free energies. Nature, 473, 231. http://dx.doi.org/10.1038/nature04061M3.

  46. Ritort, F. (2004). Poincaré Seminar 2003: Bose-Einstein condensation—entropy, chapter work fluctuations, transient violations of the second law and free-energy recovery methods: Perspectives in theory and experiments (pp. 63–87). Basel: Birkhäuser. doi:10.1007/978-3-0348-7932-3_9.

  47. Mossa, A., Manosas, M., Forns, N., et al. (2009). Dynamic force spectroscopy of DNA hairpins: I. force kinetics and free energy landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2009(nr. 02), P02060. http://stacks.iop.org/1742-5468/2009/i=02/a=P02060.

  48. Ciliberto, S., Joubaud, S., & Petrosyan, A. (2010). Fluctuations in out-of-equilibrium systems: From theory to experiment. Journal of Statistical Mechanics: Theory and Experiment, 2010(nr. 12), P12003. http://stacks.iop.org/1742-5468/2010/i=12/a=P12003.

  49. Bochkov, G., & Kuzovlev, Y. (1981). Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. generalized fluctuation-dissipation theorem. Physica A: Statistical Mechanics and its Applications, 106(3), 443–479. ISSN 0378–4371, doi:10.1016/0378-4371(81)90122-9, http://www.sciencedirect.com/science/article/pii/0378437181901229.

  50. Bochkov, G., & Kuzovlev, Y. (1981). Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: II. Kinetic potential and variational principles for nonlinear irreversible processes. Physica A: Statistical Mechanics and its Applications, 106(3), 480–520. ISSN 0378–4371, doi:10.1016/0378-4371(81)90123-0, http://www.sciencedirect.com/science/article/pii/0378437181901230.

  51. Hatano, T., & Sasa, S.-I. (2001). Steady-state thermodynamics of Langevin systems. Physical Review Letters, 86, 3463–3466. doi:10.1103/PhysRevLett.86.3463, http://link.aps.org/doi/10.1103/PhysRevLett.86.3463.

  52. Sekimoto, K. (1997). Kinetic characterization of heat bath and the energetics of thermal ratchet models. Journal of the Physical Society of Japan, 66(5), 1234–1237. doi:10.1143/JPSJ.66.1234, http://jpsj.ipap.jp/link?JPSJ/66/1234/.

  53. Sekimoto, K. (1998). Langevin equation and thermodynamics. Progress of Theoretical Physics Supplement, 130, 17–27. doi:10.1143/PTPS.130.17, http://ptps.oxfordjournals.org/content/130/17.full.pdf+html, http://ptps.oxfordjournals.org/content/130/17.abstract.

  54. Sekimoto, K. (2010). Stochastic energetics. Lecture notes in physics, Springer. ISBN 9783642054488. http://books.google.cz/books?id=4cyxd7bvZHgC.

  55. Maes, C. (2003). On the origin and the use of fluctuation relations for the entropy. Séminaire Poincaré, 2, 29–62.

    Google Scholar 

  56. Maes, C., & Netočný, K. (2003). Time-reversal and entropy. Journal of Statistical Physics, 110(1–2), 269–310. ISSN 0022–4715. doi:10.1023/A:1021026930129, http://dx.doi.org/10.1023/A/%3A1021026930129.

  57. Qian, H. (2001). Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. Physical Review E, 65, 016102. doi:10.1103/PhysRevE.65.016102, http://link.aps.org/doi/10.1103/PhysRevE.65.016102.

  58. Seifert, U. (2005). Entropy production along a stochastic trajectory and an integral fluctuation theorem. Physical Review Letters, 95, 040602. doi:10.1103/PhysRevLett.95.040602, http://link.aps.org/doi/10.1103/PhysRevLett.95.040602.

  59. Seifert, U. (2008). Stochastic thermodynamics: principles and perspectives. The European Physical Journal B—Condensed Matter and Complex Systems, 64, 423–431. ISSN 1434–6028, doi:10.1140/epjb/e2008-00001-9, http://dx.doi.org/10.1140/epjb/e2008-00001-9.

  60. Van Den Broeck, C. (1986). Stochastic thermodynamics. In W. Ebeling & H. Ulbricht (Eds.), Selforganization by nonlinear irreversible processes (Vol. 33 pp. 57–61). Berlin Heidelberg: Springer Series in Synergetics, Springer. ISBN 978-3-642-71006-3. doi:10.1007/978-3-642-71004-9_6, http://dx.doi.org/10.1007/978-3-642-71004-9_6.

  61. Mou, C. Y., li Luo, J., & Nicolis, G. (1986). Stochastic thermodynamics of nonequilibrium steady states in chemical reaction systems. The Journal of Chemical Physics, 84(12), 7011–7017.

    Google Scholar 

  62. Evans, D. J., & Searles, D. J. (2002). The fluctuation theorem. Advances in Physics, 51(7), 529–1585. doi:10.1080/00018730210155133, http://www.tandfonline.com/doi/pdf/10.1080/00018730210155133, http://www.tandfonline.com/doi/abs/10.1080/00018730210155133.

  63. Gammaitoni, L., Hänggi, P., Jung, P., et al. (1998). Stochastic resonance. Reviews of Modern Physics, 70, 223–287. doi:10.1103/RevModPhys.70.223, http://link.aps.org/doi/10.1103/RevModPhys.70.223.

  64. Chvosta, P., & Reineker, P. (2003). Analysis of stochastic resonances. Physical Review E, 68, 066109. doi:10.1103/PhysRevE.68.066109, http://link.aps.org/doi/10.1103/PhysRevE.68.066109.

  65. Jung, P., & Hänggi, P. (1990). Resonantly driven Brownian motion: Basic concepts and exact results. Physical Review A, 41, 2977–2988. doi:10.1103/PhysRevA.41.2977, http://link.aps.org/doi/10.1103/PhysRevA.41.2977.

  66. Jung, P., Hänggi, P. (1991). Amplification of small signals via stochastic resonance. Physical Review A, 44, 8032–8042. doi:10.1103/PhysRevA.44.8032, http://link.aps.org/doi/10.1103/PhysRevA.44.8032.

  67. Astumian, R. D. (1997). Thermodynamics and kinetics of a brownian motor. Science, 276(5314), 917–922. doi:10.1126/science.276.5314.917, http://www.sciencemag.org/content/276/5314/917.full.pdf, http://www.sciencemag.org/content/276/5314/917.abstract.

  68. Astumian, R. D., & Hanggi, P. (2002). Brownian motors. Physics Today, 55(11), 33–39. doi:10.1063/1.1535005. http://link.aip.org/link/?PTO/55/33/1.

  69. Hänggi, P., Marchesoni, F., & Nori, F. (2005). Brownian motors. Annalen der Physik, 14(1–3), 51–70. ISSN 1521–3889, doi:10.1002/andp.200410121, http://dx.doi.org/10.1002/andp.200410121.

  70. Allahverdyan, A. E., Johal, R. S., & Mahler, G. (2008). Work extremum principle: Structure and function of quantum heat engines. Physical Review E, 77, 041118. doi:10.1103/PhysRevE.77.041118, http://link.aps.org/doi/10.1103/PhysRevE.77.041118.

  71. Van den Broeck, C., Kawai, R., & Meurs, P. (2004). Microscopic analysis of a thermal brownian motor. Physical Review Letters, 93, 090601. doi:10.1103/PhysRevLett.93.090601, http://link.aps.org/doi/10.1103/PhysRevLett.93.090601.

  72. Sekimoto, K., Takagi, F., & Hondou, T. (2000). Carnot’s cycle for small systems: Irreversibility and cost of operations. Physical Review E, 62, 7759–7768. doi:10.1103/PhysRevE.62.7759 http://link.aps.org/doi/10.1103/PhysRevE.62.7759.

  73. Parrondo, J., & de Cisneros, B. (2002). Energetics of brownian motors: A review. Applied Physics A, 75(2), 179–191. ISSN 0947–8396. doi:10.1007/s003390201332, http://dx.doi.org/10.1007/s003390201332.

  74. Takagi, F., & Hondou, T. (1999). Thermal noise can facilitate energy conversion by a ratchet system. Physical Review E, 60, 4954–4957, doi:10.1103/PhysRevE.60.4954, http://link.aps.org/doi/10.1103/PhysRevE.60.4954.

  75. Gunawardena, J. (2014). Time-scale separation—michaelis and menten’s old idea, still bearing fruit. FEBS Journal, 281(2), 473–488. ISSN 1742–4658, doi:10.1111/febs.12532, http://dx.doi.org/10.1111/febs.12532.

  76. Thomas, P., Grima, R., & Straube, A. V. (2012). Rigorous elimination of fast stochastic variables from the linear noise approximation using projection operators. Physical Review E, 86, 041110. doi:10.1103/PhysRevE.86.041110, http://link.aps.org/doi/10.1103/PhysRevE.86.041110.

  77. Berglund, N., & Gentz, B. (2006). Noise-induced Phenomena in slow-fast dynamical systems. Probability and Its Applications, Springer London. ISBN 978-1-84628-186-0. http://www.springer.com/mathematics/probability/book/978-1-84628-038-2.

  78. Harris, R. J., & Schütz, G. M. (2007). Fluctuation theorems for stochastic dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr. 07), P07020. http://stacks.iop.org/1742-5468/2007/i=07/a=P07020.

  79. Gaspard, P. (2006). Hamiltonian dynamics, nanosystems, and nonequilibrium statistical mechanics. Physica A: Statistical Mechanics and its Applications, 369(1), 201–246. ISSN 0378–4371, doi:http://dx.doi.org/10.1016/j.physa.2006.04.010, http://www.sciencedirect.com/science/article/pii/S0378437106004055.

  80. Evans, D., & Morriss, G. (2008). Statistical mechanics of nonequilibrium liquids. Theoretical chemistry, Cambridge University Press. ISBN 9780521857918. http://books.google.cz/books?id=65URS_vPwuQC.

  81. Esposito, M., & Mukamel, S. (2006). Fluctuation theorems for quantum master equations. Physical Review E, 73, 046129. doi:10.1103/PhysRevE.73.046129, http://link.aps.org/doi/10.1103/PhysRevE.73.046129.

  82. Esposito, M., Harbola, U., & Mukamel, S. (2009). Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Reviews of Modern Physics, 81, 1665–1702. doi:10.1103/RevModPhys.81.1665 http://link.aps.org/doi/10.1103/RevModPhys.81.1665.

  83. Campisi, M., Hänggi, P., & Talkner, P. (2011). Colloquium : Quantum fluctuation relations: Foundations and applications. Reviews of Modern Physics, 83, 771–791, doi:10.1103/RevModPhys.83.771, http://link.aps.org/doi/10.1103/RevModPhys.83.771.

  84. Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1996). Quantum mechanics. Wiley. ISBN 9780471569527. http://books.google.cz/books?id=CjeNnQEACAAJ.

  85. Ritort, F., Bustamante, C., & Tinoco, I. (2002). A two-state kinetic model for the unfolding of single molecules by mechanical force. Proceedings of the National Academy of Sciences, 99(21), 13544–13548. doi:10.1073/pnas.172525099, http://www.pnas.org/content/99/21/13544.full.pdf+html, http://www.pnas.org/content/99/21/13544.abstract.

  86. Zuckerman, D. M., & Woolf, T. B. (2002). Theory of a systematic computational error in free energy differences. Physical Review Letters, 89, 180602. doi:10.1103/PhysRevLett.89.180602, http://link.aps.org/doi/10.1103/PhysRevLett.89.180602.

  87. Gore, J., Ritort, F., & Bustamante, C. (2003). Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proceedings of the National Academy of Sciences, 100(22), 12564–12569. doi:10.1073/pnas.1635159100, http://www.pnas.org/content/100/22/12564.full.pdf+html. http://www.pnas.org/content/100/22/12564.abstract.

  88. Engel, A. (2009). Asymptotics of work distributions in nonequilibrium systems. Physical Review E, 80, 021120. doi:10.1103/PhysRevE.80.021120, http://link.aps.org/doi/10.1103/PhysRevE.80.021120.

  89. Nickelsen, D., & Engel, A. (2011). Asymptotics of work distributions: The pre-exponential factor. The European Physical Journal B, 82, 207–218. ISSN 1434–6028, doi:10.1140/epjb/e2011-20133-y, http://dx.doi.org/10.1140/epjb/e2011-20133-y.

  90. Palassini, M., Ritort, F. (2011). Improving free-energy estimates from unidirectional work measurements: theory and experiment. Physical Review Letters, 107, 060601. doi:10.1103/PhysRevLett.107.060601, http://link.aps.org/doi/10.1103/PhysRevLett.107.060601.

  91. Chatelain, C., & Karevski, D. (2006). Probability distributions of the work in the two-dimensional Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2006(nr. 06), P06005. http://stacks.iop.org/1742-5468/2006/i=06/a=P06005.

  92. Híjar, H., Quintana-H, J., & Sutmann, G. (2007). Non-equilibrium work theorems for the two-dimensional Ising model. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr. 04), P04010. http://stacks.iop.org/1742-5468/2007/i=04/a=P04010.

  93. Chvosta, P., Reineker, P., & Schulz, M. (2007). Probability distribution of work done on a two-level system during a nonequilibrium isothermal process. Physical Review E, 75, 041124. doi:10.1103/PhysRevE.75.041124, http://link.aps.org/doi/10.1103/PhysRevE.75.041124.

  94. Šubrt, E., & Chvosta, P. (2007). Exact analysis of work fluctuations in two-level systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr. 09), P09019. http://stacks.iop.org/1742-5468/2007/i=09/a=P09019.

  95. Einax, M., & Maass, P. (2009). Work distributions for Ising chains in a time-dependent magnetic field. Physical Review E, 80, 020101. doi:10.1103/PhysRevE.80.020101, http://link.aps.org/doi/10.1103/PhysRevE.80.020101.

  96. Chvosta, P., Einax, M., Holubec, V., et al. (2010). Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions. Journal of Statistical Mechanics: Theory and Experiment, 2010(nr. 03), P03002. http://stacks.iop.org/1742-5468/2010/i=03/a=P03002.

  97. Mazonka, O., & Jarzynski, C. (1999). Exactly solvable model illustrating far-from-equilibrium predictions. eprint arXiv:cond-mat/9912121, December 1999, arXiv:cond-mat/9912121. http://arxiv.org/abs/cond-mat/9912121.

  98. Baule, A., & Cohen, E. G. D. (2009). Fluctuation properties of an effective nonlinear system subject to Poisson noise. Physical Review E, 79, 030103. doi:10.1103/PhysRevE.79.030103, http://link.aps.org/doi/10.1103/PhysRevE.79.030103.

  99. Manosas, M., Mossa, A., Forns, N., et al. (2009). Dynamic force spectroscopy of DNA hairpins: II. irreversibility and dissipation. Journal of Statistical Mechanics: Theory and Experiment, 2009(nr. 02), P02061. http://stacks.iop.org/1742-5468/2009/i=02/a=P02061.

  100. Verley, G., Van den Broeck, C., & Esposito, M. (2013). Modulated two-level system: Exact work statistics. Physical Review E, 88, 032137. doi:10.1103/PhysRevE.88.032137, http://link.aps.org/doi/10.1103/PhysRevE.88.032137.

  101. Ryabov, A., Dierl, M., Chvosta, P., et al. (2013). Work distribution in a time-dependent logarithmic-harmonic potential: exact results and asymptotic analysis. Journal of Physics A: Mathematical and Theoretical, 46(nr. 7), 075002. http://stacks.iop.org/1751-8121/46/i=7/a=075002.

  102. Speck, T. (2011). Work distribution for the driven harmonic oscillator with time-dependent strength: Exact solution and slow driving. Journal of Physics A: Mathematical and Theoretical, 44(nr. 30), 305001. http://stacks.iop.org/1751-8121/44/i=30/a=305001.

  103. van Zon, R., & Cohen, E. G. D. (2003). Stationary and transient work-fluctuation theorems for a dragged Brownian particle. Physical Review E, 67, 046102. doi:10.1103/PhysRevE.67.046102, http://link.aps.org/doi/10.1103/PhysRevE.67.046102.

  104. van Zon, R., & Cohen, E. G. D. (2004). Extended heat-fluctuation theorems for a system with deterministic and stochastic forces. Physical Review E, 69, 056121. doi:10.1103/PhysRevE.69.056121, http://link.aps.org/doi/10.1103/PhysRevE.69.056121.

  105. Cohen, E. G. D. (2008). Properties of nonequilibrium steady states: A path integral approach. Journal of Statistical Mechanics: Theory and Experiment, 2008(nr. 07), P07014. http://stacks.iop.org/1742-5468/2008/i=07/a=P07014.

  106. Imparato, A., & Peliti, L. (2005). Work-probability distribution in systems driven out of equilibrium. Physical Review E, 72, 046114. doi:10.1103/PhysRevE.72.046114, http://link.aps.org/doi/10.1103/PhysRevE.72.046114.

  107. Ritort, F. (2004). Work and heat fluctuations in two-state systems: A trajectory thermodynamics formalism. Journal of Statistical Mechanics: Theory and Experiment, 2004(nr. 10), P10016. http://stacks.iop.org/1742-5468/2004/i=10/a=P10016.

  108. Schmiedl, T., & Seifert, U. (2008). Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL (Europhysics Letters), 81(nr. 2), 20003. http://stacks.iop.org/0295-5075/81/i=2/a=20003.

  109. Henrich, M. J., Rempp, F., & Mahler, G. (2007). Quantum thermodynamic Otto machines: A spin-system approach. The European Physical Journal Special Topics, 151(1), 157–165. ISSN 1951–6355, doi:10.1140/epjst/e2007-00371-8, http://dx.doi.org/10.1140/epjst/e2007-00371-8.

  110. Abah, O., Roßnagel, J., Jacob, G., et al. (2012). Single-Ion heat engine at maximum power. Physical Review Letters, 109, 203006. doi:10.1103/PhysRevLett.109.203006 http://link.aps.org/doi/10.1103/PhysRevLett.109.203006.

  111. Blickle, V., & Bechinger, C. (2011). Realization of a micrometre-sized stochastic heat engine. Nature Physics, 8(2), 143–146. doi:10.1038/nphys2163, http://dx.doi.org/10.1038/nphys2163.

  112. Esposito, M., Kawai, R., Lindenberg, K., et al. (2010). Efficiency at maximum power of low-dissipation carnot engines. Physical Review Letters, 105, 150603. doi:10.1103/PhysRevLett.105.150603, http://link.aps.org/doi/10.1103/PhysRevLett.105.150603.

  113. Esposito, M., Lindenberg, K., & Van den Broeck, C. (2009). Universality of efficiency at maximum power. Physical Review Letters, 102, 130602. doi:10.1103/PhysRevLett.102.130602, http://link.aps.org/doi/10.1103/PhysRevLett.102.130602.

  114. Zhan-Chun, T. (2012). Recent advance on the efficiency at maximum power of heat engines. Chinese Physics B, 21(nr. 2), 020513. http://stacks.iop.org/1674-1056/21/i=2/a=020513.

  115. Novikov, I. I. (1958). The efficiency of atomic power stations. Journal of Nuclear Energy II, 7, 125.

    Google Scholar 

  116. Curzon, F. L., & Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1), 22–24. doi:10.1119/1.10023, http://link.aip.org/link/?AJP/43/22/1.

  117. Holubec, V., Chvosta, P., & Maass, P. (2012). Dynamics and energetics for a molecular zipper model under external driving. Journal of Statistical Mechanics: Theory and Experiment, 2012(nr. 11), P11009. http://stacks.iop.org/1742-5468/2012/i=11/a=P11009.

  118. Holubec, V., Chvosta, P., & Ryabov, A. (2010). Thermodynamics, chapter four exactly solvable examples in non-equilibrium thermodynamics of small systems. InTech, 153–176, doi:10.5772/13374. http://www.intechopen.com/books/thermodynamics.

  119. Chvosta, P., Holubec, V., Ryabov, A., et al. (2010). Thermodynamics of two-stroke engine based on periodically driven two-level system. Physica E: Low-dimensional Systems and Nanostructures, 42(3), 472–476. ISSN 1386–9477. doi:http://dx.doi.org/10.1016/j.physe.2009.06.031, Proceedings of the International Conference Frontiers of Quantum and Mesoscopic Thermodynamics FQMT ’08, http://www.sciencedirect.com/science/article/pii/S1386947709002380.

  120. Holubec, V., Chvosta, P., Einax, M., et al. (2011). Attempt time monte carlo: An alternative for simulation of stochastic jump processes with time-dependent transition rates. EPL (Europhysics Letters), 93(nr. 4), 40003. http://stacks.iop.org/0295-5075/93/i=4/a=40003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Holubec .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holubec, V. (2014). Introduction. In: Non-equilibrium Energy Transformation Processes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07091-9_1

Download citation

Publish with us

Policies and ethics