Part of the Springer Theses book series (Springer Theses)


The introduction describes the significance of ultracold atomic systems from both an experimental and theoretical perspective, while introducing many-body tunneling in open systems. Further, basic theoretical concepts used in the field of ultracold bosons are described. The structure of the thesis is then explained.


Einstein Condensation Interparticle Interaction Tunneling Process Ultracold Atom Present Thesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Einstein, Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad. Wiss. Bericht 1, 3 (1925)Google Scholar
  2. 2.
    S.N. Bose, Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad. Wiss. Bericht 22, 261 (1924)Google Scholar
  4. 4.
    T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13(1), 68–69 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    N.R. Newbury, C.J. Myatt, E.A. Cornell, C.E. Wieman, Gravitational Sisyphus Cooling of \({}^{87}{\rm {Rb}}\) in a Magnetic Trap. Phys. Rev. Lett. 74, 2196–2199 (1995)Google Scholar
  6. 6.
    J.I. Cirac, R. Blatt, P. Zoller W.D. Phillips, Laser cooling of trapped ions in a standing wave. Phys. Rev. A 46, 2668–2681 (1992)Google Scholar
  7. 7.
    H.J. Metcalf, P. Van Der Straten, Laser Cooling and Trapping (Springer, New York Inc., 1999)Google Scholar
  8. 8.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose–Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75, 3969 (1995)Google Scholar
  9. 9.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiemann, E.A. Cornell, Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor. Science 269, 198 (1995)Google Scholar
  10. 10.
    C.C. Bradley, C.A. Sackett, J.J. Tollet, R.G. Hulet, Evidence of Bose–Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75, 1687 (1995)Google Scholar
  11. 11.
    A. Görlitz et al., Realization of Bose–Einstein Condensates in Lower Dimensions. Phys. Rev. Lett. 87, 130402 (2001)Google Scholar
  12. 12.
    F. Schreck et al., Quasipure Bose–Einstein Condensate Immersed in a Fermi Sea. Phys. Rev. Lett. 87, 080403 (2001)Google Scholar
  13. 13.
    M. Greiner et al., Exploring Phase Coherence in a 2D Lattice of Bose–Einstein Condensates. Phys. Rev. Lett. 87, 160405 (2001)Google Scholar
  14. 14.
    K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. New J. Phys. 11, 043030 (2009)Google Scholar
  15. 15.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A. Zayats, J. Steinhauer, Realization of a Sonic Black Hole Analog in a Bose–Einstein Condensate. Phys. Rev. Lett. 105, 240401 (2010)Google Scholar
  18. 18.
    A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose–Einstein Condensation of Chromium. Phys. Rev. Lett. 94, 160401 (2005)Google Scholar
  19. 19.
    M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Strongly Dipolar Bose–Einstein Condensate of Dysprosium. Phys. Rev. Lett. 107, 190401 (2011)Google Scholar
  20. 20.
    J. Dunningham, K. Burnett, W.D. Phillips, Bose–Einstein condensates and precision measurements. Phil. Trans. R. Soc. A 363, 2165–2175 (2005)Google Scholar
  21. 21.
    O. Morsch, M.K. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)Google Scholar
  22. 22.
    T. Calarco, U. Dorner, P.S. Julienne, C.J. Williams, P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions. Phys. Rev. A 70, 012306 (2004)Google Scholar
  23. 23.
    D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Hall, Real-time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose–Einstein Condensate. Science 329(5996), 1182–1185 (2010)Google Scholar
  24. 24.
    W. Ketterle, Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)Google Scholar
  25. 25.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)Google Scholar
  27. 27.
    O. Penrose, L. Onsager, Bose–Einstein Condensation and Liquid Helium. Phys. Rev. 104, 576–584 (1956)Google Scholar
  28. 28.
    K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Exact Quantum Dynamics of a Bosonic Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)Google Scholar
  29. 29.
    L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Fragmented Metastable States Exist in an Attractive Bose–Einstein Condensate for Atom Numbers Well Above the Critical Number of the Gross–Pitaevskii Theory. Phys. Rev. Lett. 100, 040402 (2008)Google Scholar
  30. 30.
    A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of Excited States in the Splitting of a Trapped Interacting Bose–Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99, 030402 (2007)Google Scholar
  31. 31.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 95, 030405 (2005)Google Scholar
  32. 32.
    O.E. Alon, L.S. Cederbaum, Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Phys. Rev. Lett. 95, 140402 (2005)Google Scholar
  33. 33.
    P. Bader, U.R. Fischer, Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap. Phys. Rev. Lett. 103, 060402 (2009)Google Scholar
  34. 34.
    R.W. Spekkens, J.E. Sipe, Spatial fragmentation of a Bose–Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868–3877 (1999)Google Scholar
  35. 35.
    E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Fragmentation of Bose–Einstein condensates. Phys. Rev. A 74, 033612 (2006)Google Scholar
  36. 36.
    C. Weiss, Y. Castin, Creation and Detection of a Mesoscopic Gas in a Nonlocal Quantum Superposition. Phys. Rev. Lett. 102, 010403 (2009)Google Scholar
  37. 37.
    G. Gamow, Zur Quantentheorie des Atomkernes. Z. f. Phys. 51(3–4), 204–212 (1928)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    H.A. Kramers, Wellenmechanik und halbzählige Quantisierung. Zeitschr. f. Physik A 39 (10–11), 828–840 (1926)Google Scholar
  39. 39.
    N. Takigawa, A.B. Balantekin, Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77–100 (1998)Google Scholar
  40. 40.
    B.S. Bhandari, Resonant tunneling and the bimodal symmetric fission of \(^{258}\)Fm. Phys. Rev. Lett. 66, 1034–1037 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    J. Keller, J. Weiner, Direct measurement of the potential-barrier height in the B\(^1\Pi _u\) state of the sodium dimer. Phys. Rev. A 29, 2943–2945 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    M. Vatasescu et al., Multichannel tunneling in the Cs\(_2\)0\(_g^-\) photoassociation spectrum. Phys. Rev. A 61, 044701 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    A.U.J. Lode, K. Sakmann, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle (Springer, Heidelberg, 1981)CrossRefzbMATHGoogle Scholar
  45. 45.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: Many-Body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)Google Scholar
  46. 46.
    E.P. Gross, Structure of a quantized vortex in boson systems. II Nuovo Cimento 20, 454 (1961)CrossRefzbMATHGoogle Scholar
  47. 47.
    L.P. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451 (1961)MathSciNetGoogle Scholar
  48. 48.
    L.S. Cederbaum, A.I. Streltsov, Best mean-field for condensates. Phys. Lett. A 318, 564–569 (2003)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Time-dependent multiorbital mean-field for fragmented Bose–Einsten condensates. Phys. Lett. A 362, 453–459 (2007)Google Scholar
  50. 50.
    I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cedrbaum, J. Burgdörfer, Wave chaos as signature for depletion of a Bose–Einstein condensate. Phys. Rev. A 86, 013630 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Condensed Matter Theory and Quantum Computing GroupUniversity of BaselBaselSwitzerland

Personalised recommendations