Skip to main content

Introduction and Theoretical Background

  • Chapter
  • First Online:
Searches for CP Violation in Charmed Meson Decays

Part of the book series: Springer Theses ((Springer Theses))

  • 281 Accesses

Abstract

This thesis on searches for \(C\!P\) violation in charmed meson decays is introduced with an overview of the theoretical background to the subject starting from the Standard Model of particle physics. A discussion of \(C\!P\) violation in the kaon and charm systems is followed by an introduction to Dalitz plot analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exception to this rule is that decays of a single top quark can be reconstructed.

  2. 2.

    The OZI rule [40] states that any strongly occurring process with a Feynman diagram that can be split in two by cutting only internal gluon lines will be suppressed.

References

  1. LHCb collaboration, Aaij R et al (2013) First evidence for the decay \(B_{s}^{0} \rightarrow \mu ^{+}\mu ^{-}\). Phys Rev Lett 110:021801. arXiv:1211.2674

  2. LHCb collaboration, Aaij R et al (2012) Articletitles Evidence for CP violation in time-integrated \(D^0 \rightarrow h^-h^+\) decay rates. Phys Rev Lett 108:111602. arXiv:1112.0938

  3. LHCb collaboration, Aaij R et al (2013) Search for direct CP violation in \(D^{0}\rightarrow h^{-}h^{+}\) modes using semileptonic \(B\) decays. Phys Lett B 723:33–43. arXiv:1303.2614

  4. LHCb collaboration, Aaij R et al (2013) A search for time-integrated CP violation in \(D^0\rightarrow K^-K^+\) and \(D^0\rightarrow \pi ^-\pi ^+\) decays. LHCb-CONF-2013-003

    Google Scholar 

  5. LHCb collaboration, Aaij R et al (2013) Observation of \(D^{0}\)-\(\bar{D}^{0}\) oscillations. Phys Rev Lett 110:101802. arXiv:1211.1230

  6. LHCb collaboration, Aaij R et al (2012) A measurement of \(\gamma \) from a combination of \(B^\pm \rightarrow Dh^\pm \) analyses. LHCb-CONF-2012-032

    Google Scholar 

  7. LHCb collaboration, Adeva B et al (2009) Roadmap for selected key measurements of LHCb. arXiv:0912.4179

  8. LHCb collaboration, Aaij R et al (2013) Measurement of the \(D^{\pm }\) production asymmetry in 7TeV \(pp\) collisions, Phys Lett B 718:902. arXiv:1210.4112

  9. LHCb collaboration, Aaij R et al (2013) Prompt charm production in pp collisions at sqrt(s)=7 TeV. Nucl Phys B 871:1. arXiv:1302.2864

  10. Burgess C, Moore G (2006) The standard model: a primer. Cambridge University Press, New York

    Google Scholar 

  11. Peskin M, Schroeder D (1995) An introduction to quantum field theory. Basic Books. Addison-Wesley, Redwood City

    Google Scholar 

  12. Pich A (1993) CP violation. arXiv:hep-ph/9312297

  13. Isidori G (2013) Flavor physics and CP violation. arXiv:1302.0661

  14. Nir Y (2001) CP violation: a new era. arXiv:hep-ph/0109090

  15. LHCb collaboration, Aaij R et al (2011) Search for CP violation in \(D^{+} \rightarrow K^{-}K^{+}\pi ^{+}\) decays. Phys Rev D 84:112008. arXiv:1110.3970

  16. LHCb collaboration, Aaij R et al (2013) Search for CP violation in \(D^{+} \rightarrow \phi \pi ^{+}\) and \(D^{+}_{s} \rightarrow K^{0}_{S}\pi ^{+}\) decays. JHEP 06:112. arXiv:1303.4906

  17. Bianco S, Fabbri F, Benson D, Bigi I (2003) A Cicerone for the physics of charm. Riv Nuovo Cim 26N7:1. arXiv:hep-ex/0309021

  18. Cornwall JM, Levin DN, Tiktopoulos G (1974) Derivation of gauge invariance from high-energy unitarity bounds on the \(S\)-matrix. Phys Rev D 10:1145

    Article  ADS  Google Scholar 

  19. t’Hooft G (2007) Renormalization and gauge invariance. Prog Theor Phys Suppl 170:56

    Google Scholar 

  20. Particle Data Group, Beringer J et al (2012) Review of particle physics. Phys Rev D 86:010001

    Google Scholar 

  21. ATLAS collaboration, Aad G et al (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1. arXiv:1207.7214

  22. CMS collaboration, Chatrchyan S et al (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30. arXiv:1207.7235

  23. Wu CS, Ambler E, Hayward RW, Hoppes DD, Hudson RP (1957) Experimental test of parity conservation in beta decay. Phys Rev 105:1413

    Article  ADS  Google Scholar 

  24. Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531

    Article  ADS  Google Scholar 

  25. Kobayashi M, Maskawa T (1973) CP violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652

    Article  ADS  Google Scholar 

  26. UTfit collaboration, Derkach D (2013) Unitarity triangle fitter results for CKM angles. arXiv:1301.3300

  27. Sakharov AD (1991) Violation of \(CP\) invariance, \(C\) asymmetry, and baryon asymmetry of the universe. Sov Phys Usp 34(5):392

    Google Scholar 

  28. Lee TD, Oehme R, Yang CN (1957) Remarks on possible noninvariance under time reversal and charge conjugation. Phys Rev 106:340

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Christenson JH, Cronin JW, Fitch VL, Turlay R (1964) Evidence for the \(2\pi \) decay of the \(K_{2}^{0}\) meson. Phys Rev Lett 13:138

    Article  ADS  Google Scholar 

  30. NA31 collaboration, Burkhardt H et al (1988) First evidence for direct CP violation. Phys Lett B 206:169

    Google Scholar 

  31. Grossman Y, Kagan AL, Nir Y (2007) New physics and CP violation in singly Cabibbo suppressed D decays. Phys Rev D 75:036008. arXiv:hep-ph/0609178

  32. Grossman Y, Nir Y (2012) CP violation in \(\tau ^{-} \rightarrow \nu \pi ^{-}K^{0}_{{S}}\) and \(D^{+} \rightarrow \pi ^{+}K_{{s}}^{0}S\): the importance of \(K_{{S}}^{0}-K_{0}^{{L}}\) interference. JHEP 04:002 arXiv:1110.3790

  33. Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with lepton-hadron symmetry. Phys Rev D 2:1285

    Article  ADS  Google Scholar 

  34. BABAR collaboration, Aubert B et al (2007) Evidence for \(D^{0}\) - \(\bar{D}^{0}\) mixing. Phys Rev Lett 98:211802. arXiv:hep-ex/0703020

  35. Belle collaboration, Staric M et al (2007) Evidence for \(D^0\) - \(\bar{D}^0\) mixing. Phys Rev Lett 98:211803. arXiv:hep-ex/0703036

  36. Gershon T (2013) Flavour physics in the LHC era. arXiv:1306.4588

  37. Heavy Flavor Averaging Group, Amhis Y et al (2012) Averages of B-hadron, C-hadron, and tau-lepton properties as of early. arXiv:1207.1158

  38. CDF collaboration, Aaltonen T et al (2012) Measurement of the difference of CP-violating asymmetries in \(D^0 \rightarrow K^+K^-\) and \(D^0 \rightarrow \pi ^+\pi ^-\) decays at CDF. Phys Rev Lett 109:111801. arXiv:1207.2158

  39. van Tilburg J (2013) New results on \(CP\) violation in the charm sector. CERN seminar for the LHCb collaboration, March 2013

    Google Scholar 

  40. Zweig G (1980) An SU(3) model for strong interaction symmetry and its breaking. Developments in the Quark Theory of Hadrons, vol 1

    Google Scholar 

  41. Buccella F et al (1993) \(CP\) violating asymmetries in charged D meson decays. Phys Lett B 302:319. arXiv:hep-ph/9212253

  42. BaBar collaboration, Lees J et al (2013) Search for direct \(CP\)-violation in singly-Cabibbo suppressed \(D^\pm \rightarrow K^+ K^- \pi ^\pm \) decays. Phys Rev D 87:052010. arXiv:1212.1856

  43. Bennett C et al (2013) Nine-year Wilkinson microwave anisotropy Probe (WMAP) observations: final maps and results. arXiv:1212.5225

  44. Coleman S, Weinberg E (1973) Radiative corrections as the origin of spontaneous symmetry breaking. Phys Rev D 7:1888

    Article  ADS  Google Scholar 

  45. Golowich E, Hewett J, Pakvasa S, Petrov AA (2007) Implications of \(D^0\) - \(\bar{D}^0\) mixing for new physics. Phys Rev D 76:095009. arXiv:0705.3650

  46. Buchalla G, Buras AJ, Lautenbacher ME (1996) Weak decays beyond leading logarithms. Rev Mod Phys 68:1125. arXiv:hep-ph/9512380

  47. Delaunay C, Kamenik JF, Perez G, Randall L (2013) Charming CP violation and dipole operators from RS flavor anarchy. JHEP 1301:027. arXiv:1207.0474

  48. Delepine D, Faisel G, Ramirez CA (2013) Observation of CP violation in \(D^0 \rightarrow K^- \pi ^+ \) as a smoking gun for new physics. Phys Rev D 87:075017. arXiv:1212.6281

  49. Gronau M, London D (1997) New physics in \(CP\) asymmetries and rare \(B\) decays. Phys Rev D 55:2845

    Article  ADS  Google Scholar 

  50. CLEO collaboration, Rubin P et al (2008) Search for \(CP\) violation in the Dalitz-plot analysis of \(D^+ \rightarrow K^- K^+ \pi ^+\). Phys Rev D 78:072003. arXiv:0807.4545

  51. CLEO collaboration, Kopp S et al (2001) Dalitz analysis of the decay \(D^{0}\rightarrow K^{-}\pi ^{+}\pi ^{0}\). Phys Rev D 63:092001. arXiv:hep-ex/0011065

  52. E791 collaboration, Aitala E et al (2006) Model independent measurement of S-wave \(K^{-}\pi ^{+}\) systems using \(D^{+} \rightarrow K^{-}\pi ^{+}\pi ^{+}\) decays from Fermilab E791. Phys Rev D 73:032004. arXiv:hep-ex/0507099

  53. Chung SU et al (1995) Partial wave analysis in K-matrix formalism. Ann Phys 507:404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamish Gordon .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gordon, H. (2014). Introduction and Theoretical Background. In: Searches for CP Violation in Charmed Meson Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07067-4_1

Download citation

Publish with us

Policies and ethics