Skip to main content

Discriminating Normal from “Abnormal” Pregnancy Cases Using an Automated FHR Evaluation Method

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Abstract

Electronic fetal monitoring has become the gold standard for fetal assessment both during pregnancy as well as during delivery. Even though electronic fetal monitoring has been introduced to clinical practice more than forty years ago, there is still controversy in its usefulness especially due to the high inter- and intra-observer variability. Therefore the need for a more reliable and consistent interpretation has prompted the research community to investigate and propose various automated methodologies. In this work we propose the use of an automated method for the evaluation of fetal heart rate, the main monitored signal, which is based on a data set, whose labels/annotations are determined using a mixture model of clinical annotations. The successful results of the method suggest that it could be integrated into an assistive technology during delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfirevic, Z., Devane, D., Gyte, G.M.: Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev. 3 (2006)

    Google Scholar 

  2. Bernardes, J., Costa-Pereira, A., Ayres-de-Campos, D., van Geijn, H.P., Pereira-Leite, L.: Evaluation of interobserver agreement of cardiotocograms. Int. J. Gynaecol. Obstet. 57(1), 33–37 (1997)

    Article  Google Scholar 

  3. Blix, E., Sviggum, O., Koss, K.S., Oian, P.: Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG 110(1), 1–5 (2003)

    Article  Google Scholar 

  4. Chen, H.Y., Chauhan, S.P., Ananth, C.V., Vintzileos, A.M., Abuhamad, A.Z.: Electronic fetal heart rate monitoring and its relationship to neonatal and infant mortality in the United States. Am. J. Obstet. Gynecol. 204(6), 491.e1–491.e10 (2011)

    Google Scholar 

  5. FIGO, Guidelines for the Use of Fetal Monitoring. Int. J. Gynaecol. Obstet. 25, 159–167 (1986)

    Google Scholar 

  6. ACOG: American College of Obstetricians and Gynecologists Practice Bulletin. No.106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet. Gynecol. 114(1), 192–202 (2009)

    Google Scholar 

  7. Dawes, G.S., Visser, G.H.A., Goodman, J.D.S., Redman, C.W.G.: Numerical analysis of the human fetal heart rate: the quality of ultrasound records. Am. J. Obstet. Gynecol. 141(1), 43–52 (1981)

    Google Scholar 

  8. de Campos, D.A., Ugwumadu, A., Banfield, P., Lynch, P., Amin, P., Horwell, D., Costa, A., Santos, C., Bernardes, J., Rosen, K.: A randomised clinical trial of intrapartum fetal monitoring with computer analysis and alerts versus previously available monitoring. BMC Pregnancy Childbirth 10(71) (2010)

    Google Scholar 

  9. Task-Force. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17(3), 354–381(1996)

    Google Scholar 

  10. Magenes, G., Signorini, M.G., Arduini, D.: Classification of cardiotocographic records by neural networks. In: Proc. IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 3, pp. 637–641 (2000)

    Google Scholar 

  11. Goncalves, H., Rocha, A.P., de Campos, D.A., Bernardes, J.: Linear and nonlinearfetal heart rate analysis of normal and acidemic fetuses in the minutes precedingdelivery. Med. Biol. Eng. Comput. 44(10), 847–855 (2006)

    Article  Google Scholar 

  12. Van Laar, J.O.E.H., Porath, M.M., Peters, C.H.L., Oei, S.G.: Spectral analysis of fetal heartrate variability for fetal surveillance: Review of the literature. Acta Obstetricia et Gynecologica Scandinavica 87(3), 300–306 (2008)

    Article  Google Scholar 

  13. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Feature Extraction and Classiffication of Fetal Heart Rate Using Wavelet Analysis and Support Vector Machines. International Journal on Artifficial Intelligence Tools 15, 411–432 (2005)

    Article  Google Scholar 

  14. Spilka, J., Chudáček, V., Koucký, M., Lhotská, L., Huptych, M., Janků, P., Georgoulas, G., Stylios, C.: Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control 7(4), 350–357 (2012)

    Article  Google Scholar 

  15. Georgoulas, G., Stylios, C.D., Groumpos, P.P.: Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 53(5), 875–884 (2006)

    Article  Google Scholar 

  16. Czabanski, R., Jezewski, M., Wrobel, J., Jezewski, J., Horoba, K.: Predicting the risk of low-fetal birth weight from cardiotocographic signals using ANBLIR system with deterministic annealing and epsilon-insensitive learning. IEEE Trans. Inf. Technol. Biomed. 14(4), 1062–1074 (2010)

    Article  Google Scholar 

  17. Georgieva, A., Payne, S.J., Moulden, M., Redman, C.W.G.: Artifficial neural networks applied to fetal monitoring in labour. Neural Computing and Applications 22(1), 85–93 (2013)

    Article  Google Scholar 

  18. De Haan, J., Van Bemmel, J.H., Versteeg, B., Veth, A.F.L., Stolte, L.A.M., Janssens, J., Eskes, T.K.A.B.: Quantitative evaluation of fetal heart rate patterns. I. Processing methods. European Journal of Obstetrics and Gynecology and Reproductive Biology 1(3), 95–102 (1971)

    Article  Google Scholar 

  19. Yeh, S.Y., Forsythe, A., Hon, E.H.: Quantification of fetal heart beat-to-beat interval differences. Obstet. Gynecol. 41(3), 355–363 (1973)

    Google Scholar 

  20. Pardey, J., Moulden, J., Redman, C.W.G.: A computer system for the numerical analysis of nonstress tests. Am. J. Obstet. Gynecol. 186(5), 1095–1103 (2002)

    Article  Google Scholar 

  21. Signorini, M.G., Magenes, G., Cerutti, S., Arduini, D.: Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 50(3), 365–374 (2003)

    Article  Google Scholar 

  22. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D 31(2), 277–283 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1), 82–87 (1995)

    Article  Google Scholar 

  24. Sevcik, C.: A Procedure to Estimate the Fractal Dimension of Waveforms. Complexity International 5 (1998)

    Google Scholar 

  25. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  26. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Google Scholar 

  27. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory IT-22(1), 75–81 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Theodoridis, S., Koutroumbas, K.: Pattern recognition, 4th edn. Academic Press (2009)

    Google Scholar 

  29. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature extraction: foundations and applications. STUDFUZZ, vol. 207. Springer (2006)

    Google Scholar 

  30. Liu, H., Motoda, H.: Computational methods of feature selection. Chapman & Hall/CRC (2007)

    Google Scholar 

  31. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  32. Athanasiou, L., Karvelis, P., Tsakanikas, V., Naka, K., Michalis, L., Bourantas, C., Fotiadis, D.: A novel semi-automated atherosclerotic plaque characterization method using grayscale intravascular ultrasound images: Comparison with Virtual Histology. IEEE Transactions on Information Technology in Biomedicine 16(3), 391–400 (2012)

    Article  Google Scholar 

  33. Liaw, A., Wiener, M.: Classification and Regression by random Forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  34. Díaz-Uriarte, R., De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(1), 3 (2006)

    Article  Google Scholar 

  35. Chudáček, V., Spilka, J., Burša, M., Janků, P., Hruban, L., Huptych, M., Lhotská, L.: Open access intrapartum CTG database. BMC Pregnancy and Childbirth 14 (2014)

    Google Scholar 

  36. Lazarsfeld, P.F.: The Logical and Mathematical Foundations of Latent Structure Analysis. In: Samuel, A., Stouffer (eds.) Measurement and Prediction, pp. 362–412. John Wiley & Sons, New York (1950)

    Google Scholar 

  37. Spilka, J., Chudáček, V., Janků, P., Hruban, L., Burša, M., Huptych, M., Zach, L., Lhotská, L.: Analysis of obstetricians’ decision making on CTG recordings. Journal of Biomedical Informatics (2014) (manuscript submitted for publication)

    Google Scholar 

  38. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics 28, 20–28 (1979)

    Article  Google Scholar 

  39. Raykar, V.C., Yu, A.: Eliminating Spammers and Ranking Annotators for Crowd sourced Labeling Tasks. Journal of Machine Learning Research 13, 491–518 (2012)

    MATH  MathSciNet  Google Scholar 

  40. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38 (1977)

    Google Scholar 

  41. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  42. Japkowicz, N., Shah, M.: Evaluating learning algorithms: A classification perspective. Cambridge University Press (2011)

    Google Scholar 

  43. Salzberg, S.L.: On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and knowledge discovery 1(3), 317–328 (1997)

    Article  Google Scholar 

  44. Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction. Springer (2009)

    Google Scholar 

  45. Xuewen, C., Wasikowski, M.: Fast: A roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 124–132. ACM (2008)

    Google Scholar 

  46. Kubat, M., Stan, M.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, vol. 97, pp. 179–186 (1997)

    Google Scholar 

  47. Spilka, J., Georgoulas, G., Karvelis, P., Oikonomou, V.P., Chudáček, V., Stylios, C.D., Lhotská, L., Janků, P.: Automatic evaluation of FHR recordings from CTU-UHB CTG database. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 47–61. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  48. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Spilka, J., Georgoulas, G., Karvelis, P., Chudáček, V., Stylios, C.D., Lhotská, L. (2014). Discriminating Normal from “Abnormal” Pregnancy Cases Using an Automated FHR Evaluation Method. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics