Conception of a Novel Open Source Environmental Management Information System Design to Assess the Availability of Resources: Status Quo and Directions for Future Research

  • Stefan Bensch
  • Ralph Andris
  • Dennis Stindt
  • Axel Tuma
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 8)


Resources for new technologies are vitally important and limited in their availability. The reasons for the limited availability are political tension, supply concentrations or restricted potential for substitution and recycling. The consideration of information on the availability requires the mapping of this information in business information systems. Science and practice lack holistic and integrated solutions whose use supports the availability and evaluation of sustainable developments. Taking account of open source software, a concept of environmental management information systems is under development, in order to measure sustainable availability. The integration of existing IT systems and data sources provides an improved assessment of risks. The article shows a concept of IT architecture which can be used as open source software in the regulatory framework of environmental management information systems in order to evaluate the availability of resources and course of action.


EMIS design Theoretical foundations Resource availability 


  1. 1.
    Theis, T. (2007). Energy-conserving classical computation: Prospects and challenges.
  2. 2.
    Graedel, T. E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., et al. (2012). Methodology of metal criticality determination. Environmental Science and Technology, 46(2), 1063–1070.CrossRefGoogle Scholar
  3. 3.
    Achzet, B., Reller, A., Zepf, V., Rennie, C., & Simmons, M. (2011). Materials critical to the energy industry: An introduction. Germany: University of AugsburgGoogle Scholar
  4. 4.
    Bundesanstalt für Geowissenschaften und Rohstoffe, Bundesrepublik Deutschland, Rohstoffsituation 2008. Bundesanstalt für Geowissenschaften und Rohstoffe/Zsfassung in engl. Sprache. Hannover: Bundesanst. für Geowiss. und Rohstoffe, 2009.Google Scholar
  5. 5.
    US Department of Energy, Critical Materials Strategy, 2011.
  6. 6.
    Trappe, D. J., Wallrad, Z. R., Adolphs, C., & Schubert, P. (2009). Open-source-software für das enterprise resource planning. Koblenz.Google Scholar
  7. 7.
    Rautenstrauch, C. (1999). Betriebliche Umweltinformations-systeme: Grundlagen, Konzepte und Systeme.Google Scholar
  8. 8.
    Funk, B., & Niemeyer, P. (2010). Abbildung von Umweltwirkungen in Betrieblichen Informationssystemen. HMD Praxis der Wirtschaftsinformatik, 247, 37–46.CrossRefGoogle Scholar
  9. 9.
    Junker, H. (2010). Die Beliebigkeit der Nachhaltigkeit in der betrieblichen Umweltinformatik. HMD Praxis der Wirtschaftsinformatik, 274, 4–5.CrossRefGoogle Scholar
  10. 10.
    Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 24(3), 75–105.Google Scholar
  11. 11.
    Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A design science research methodology for information systems research. Journal of Management Information Systems, 24, 54–77.CrossRefGoogle Scholar
  12. 12.
    Teuteberg, F., & Gómez, J.-M. (2010). Status quo und Herausforderungen für BUIS der nächsten Generation. HMD Praxis der Wirtschaftsinformatik, 274, 6–17.CrossRefGoogle Scholar
  13. 13.
    Teuteberg, F., & Straßenburg, J. (2009) State of the art and future research in environmental management information systems: A systematic literature review. In Information technologies in environmental engineering (pp. 64–77). Berlin: SpringerGoogle Scholar
  14. 14.
    Diedrich, O. (2013). Trendstudie open source. Retrieved May 10, 2013, from
  15. 15.
    Smets-Solanes, J.-P., & de Carvalho, R. (2003). ERP5: A next-generation, open-source ERP architecture. IT Prof, 5(4), 38–44.CrossRefGoogle Scholar
  16. 16.
    Golfarelli, M. (2009). Open source BI platforms: A functional and architectural comparison. Data Warehousing and Knowledge Discovery, 5691, 287–297.Google Scholar
  17. 17.
    Tereso, M., & Bernardino, J. (2011) Open source business intelligence tools for SMEs. In 2011 6th Iberian Conference on Information Systems and Technologies (CISTI). Google Scholar
  18. 18.
    Gioia A., Cazzin, G., & Damiani, E. (2008). SpagoBI: A distinctive approach in open source business intelligence. In Digital Ecosystems and Technologies (pp. 592–595).Google Scholar
  19. 19.
    Thomsen, C., & Pedersen, T. B. (2005). A survey of open source tools for business intelligence, (No. 3589, pp. 74–84). Berlin: SpringerGoogle Scholar
  20. 20.
    Schnackenbeck, T., Wohlgemuth, V., & Panic, D. (2008). Entwicklung eines Open-Source Software-Rahmenwerkes als Grundlage zur Implementierung von betrieblichen Umweltinformationssystemen (BUIS). Konzepte, Anwendungen, Realisierungen und Entwicklungstendenzen betrieblicher Umweltinformationssysteme (BUIS) (pp. 13–26).Google Scholar
  21. 21.
    Panic, D., Schnackenbeck, T., & Wohlgemuth, V. (2008). Erweiterung eines Open-Source-Rahmenwerkes um Simulationsfunktionalität für betriebliche Umweltinformationssysteme (BUIS). Simulation in den Umwelt- und Geowissenschaften.Google Scholar
  22. 22.
    Wohlgemuth, V., Schnackenbeck, T., Mäusbacher, M., & Panic, D. (2009). Conceptual design and implementation of a toolkit platform for the development of EMIS based on the open source plugin-framework Empinia. In Environmental informatics and industrial environmental protection (pp. 149–154). Aachen: Shaker Verlag.Google Scholar
  23. 23.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al. (2009). The eucalyptus open-source cloud-computing system. In 9th IEEE/ACM International Symposium Cluster Computing and the Grid (CCGRID) (pp. 124–131).Google Scholar
  24. 24.
    Boudreau, M.-C., FGefen, D., & Straub, D. (2001). Validation in information systems research: A state-of-the-art assessment. MIS Quarterly, 25(1), 1–16.CrossRefGoogle Scholar
  25. 25.
    Wilde, T., & Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik. Wirtschaftsinformatik. Wirtschaftsinformatik, 49(4), 280–287.CrossRefGoogle Scholar
  26. 26.
    FME (2013). Optimierung von Materialprozessen und -stammdaten in SAP” Optimierung von Materialprozessen und -stammdaten in SAP.
  27. 27.
    SAP (2013). Materialstammdaten (SAP-Bibliothek—Einkauf (MM-PUR)).
  28. 28.
    Bublies, T, Matthew, A., Meißner, S., Oswald, I., & Reller, A. (2009). The mobile phone: Powerful communicator and potential metal dissipator. In GAIA (pp. 127–135).Google Scholar
  29. 29.
    Erek, K., Schmidt, H., Zarnekow, R., & Kolbe, L. (2010). Green IT im Rahmen eines nachhaltigen informations-managements (pp. 65–73). Wirtschaftsinformatik: HMD Praxis der.Google Scholar
  30. 30.
    Gruber, T. (1993). Toward principles for the design of ontologies used for knowledge sharing. International Journal Human-Computer Studies, 43, 907–928.CrossRefGoogle Scholar
  31. 31.
    Rapp, B., Bremer, J., Sonnenschein, M., & Gómez, J. (2010). Ontologiebasierte Kaskadennutzung von Rohstoffen. Green Computing and Sustainability, 274, 47–55.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stefan Bensch
    • 1
  • Ralph Andris
    • 1
  • Dennis Stindt
    • 1
  • Axel Tuma
    • 1
  1. 1.Chair of Business AdministrationProduction and Supply Chain ManagementAugsburgGermany

Personalised recommendations