Skip to main content

New Lower Bounds on the Number of Vehicles for the Vehicle Routing Problem with Time Windows

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8451)

Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) consists in determining the routing plan of vehicles with identical capacity in order to supply the demands of a set of customers with predefined time windows. This complex multi-constrained problem has been widely studied due to its industrial, economic and environmental implications. In this work, we are interested in defining the number of vehicles needed to visit all the customers. This objective is very important to evaluate the fixed costs for operating the fleet. In this paper, we provide an analysis of several lower bounds based on incompatibility between customers and on vehicle capacity constraints. We also develop an adaptation of Energetic Reasoning algorithm for VRPTW with a limited fleet. The proposed approach focuses on some time-intervals and exploits time constraints, incompatibility graph and bin packing models in order to obtain new valid lower bounds for the fleet size. Experiments conducted on the standard benchmarks show that our algorithms outperform the classical lower bound techniques and give the minimum number of vehicles for 339 out of 468 instances.

Keywords

  • vehicle routing
  • time windows
  • lower bounds
  • energetic reasoning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07046-9_30
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-07046-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarenga, G.B., Mateus, G.R., De Tomi, G.: A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Computers & Operations Research 34(6), 1561–1584 (2007)

    MATH  CrossRef  Google Scholar 

  2. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies for the vehicle routing problem. Operations Research 59(5), 1269–1283 (2011)

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Baldacci, R., Mingozzi, A., Roberti, R.: Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research 218(1), 1–6 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  4. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time-bound adjustments for cumulative scheduling problems. Annals of Operations Research 92, 305–333 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)

    CrossRef  Google Scholar 

  6. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii: Metaheuristics. Transportation Science 39(1), 119–139 (2005)

    CrossRef  Google Scholar 

  7. Cordeau, J.F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: The vehicle routing problem. ch. VRP with Time Windows, pp. 157–193. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Google Scholar 

  8. Desaulniers, G., Lessard, F., Hadjar, A.: Tabu search, partial elementarity, and generalized k-path inequalities for the vehicle routing problem with time windows. Transportation Science 42(3), 387–404 (2008)

    CrossRef  Google Scholar 

  9. Erschler, J., Lopez, P., Thuriot, C.: Raisonnement temporel sous contraintes de ressources et problèmes d’ordonnancement. Revue d’Intelligence Artificielle 5(3), 7–36 (1991)

    Google Scholar 

  10. Fisher, M.L., Jörnsten, K.O., Madsen, O.B.: Vehicle routing with time windows: Two optimization algorithms. Operations Research 45(3), 488–492 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In: Proceedings of EUROGEN 1999, vol. 2, pp. 57–64 (1999)

    Google Scholar 

  12. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin packing problem with conflicts. Computers & Operations Research 31(3), 347–358 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Golden, B.L., Assad, A.A., Wasil, E.A.: Routing vehicles in the real world: Applications in the solid waste, beverage, food, dairy, and newspaper industries. In: The Vehicle Routing Problem, pp. 245–286. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)

    MATH  CrossRef  Google Scholar 

  14. Haouari, M., Gharbi, A.: Fast lifting procedures for the bin packing problem. Discrete Optimization 2(3), 201–218 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research 56(2), 497–511 (2008)

    MATH  CrossRef  Google Scholar 

  16. Jung, S., Moon, B.R.: A hybrid genetic algorithm for the vehicle routing problem with time windows. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, July 9-13, pp. 1309–1316. Morgan Kaufmann, New York (2002)

    Google Scholar 

  17. Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problem with time windows. Computers & Operations Research 35(7), 2307–2330 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Konc, J., Janezic, D.: An improved branch and bound algorithm for the maximum clique problem. Proteins 58, 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Kontoravdis, G., Bard, J.F.: A grasp for the vehicle routing problem with time windows. ORSA Journal on Computing 7(1), 10–23 (1995)

    MATH  CrossRef  Google Scholar 

  20. Labadi, N., Prins, C., Reghioui, M.: A memetic algorithm for the vehicle routing problem with time windows. Rairo-Operations Research 42, 415–431 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981)

    CrossRef  Google Scholar 

  22. Little, J.D.C., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Operations Research 11(6), 972–989 (1963)

    MATH  CrossRef  Google Scholar 

  23. Néron, E., Baptiste, P., Gupta, J.N.: Solving hybrid flow shop problem using energetic reasoning and global operations. Omega 29(6), 501–511 (2001)

    CrossRef  Google Scholar 

  24. Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Applied Intelligence 24, 17–30 (2006)

    CrossRef  Google Scholar 

  25. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

  26. Tan, K.C., Chew, Y., Lee, L.: A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Computational Optimization and Applications 34(1), 115–151 (2006)

    MathSciNet  MATH  CrossRef  Google Scholar 

  27. Ursani, Z., Essam, D., Cornforth, D., Stocker, R.: Localized genetic algorithm for vehicle routing problem with time windows. Applied Soft Computing 11(8), 5375–5390 (2011)

    CrossRef  Google Scholar 

  28. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Computers & Operations Research 40(1), 475–489 (2013)

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Afifi, S., Guibadj, R.N., Moukrim, A. (2014). New Lower Bounds on the Number of Vehicles for the Vehicle Routing Problem with Time Windows. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)