Skip to main content

SAT and Hybrid Models of the Car Sequencing Problem

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014)

Abstract

We compare both pure SAT and hybrid CP/SAT models for solving car sequencing problems, and close 13 out of the 23 large open instances in CSPLib. Three features of these models are crucial to improving the state of the art in this domain. For quickly finding solutions, advanced CP heuristics are important and good propagation (either by a specialized propagator or by a sophisticated SAT encoding that simulates one) is necessary. For proving infeasibility, clause learning in the SAT solver is critical. Our models contain a number of novelties. In our hybrid models, for example, we develop a linear time mechanism for explaining failure and pruning the AtMostSeqCard constraint. In our SAT models, we give powerful encodings for the same constraint. Our research demonstrates the strength and complementarity of SAT and hybrid methods for solving difficult sequencing problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: An update. In: Proceedings of ICCAD, pp. 450–457 (2002)

    Google Scholar 

  2. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

    Article  Google Scholar 

  4. Biere., A., Heule., M., van Maaren., H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  5. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cambazard, H.: Résolution de problmes combinatoires par des approches fondées sur la notion dexplication. PhD thesis, Ecole des mines de Nantes (2006)

    Google Scholar 

  7. Cambazard, H., Jussien, N.: Identifying and exploiting problem structures using explanation-based constraint programming. Constraints 11(4), 295–313 (2006)

    Article  MathSciNet  Google Scholar 

  8. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MathSciNet  Google Scholar 

  9. Dixon, H.: Automating Pseudo-Boolean Inference within a DPLL Framework. PhD thesis, University of Oregon (2004)

    Google Scholar 

  10. Dixon, H.E., Ginsberg, M.L.: Inference Methods for a Pseudo-Boolean Satisability Solver. In: Proceedings of AAAI, pp. 635–640 (2002)

    Google Scholar 

  11. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    Article  Google Scholar 

  12. Feydy, T., Schutt, A., Stuckey, P.: Semantic Learning for Lazy Clause Generation. In: TRICS workshop, held alongside CP (2013)

    Google Scholar 

  13. Gent, I.P.: Arc Consistency in SAT. In: Proceedings of ECAI, pp. 121–125 (2002)

    Google Scholar 

  14. Gent, I.P., Walsh, T.: CSPlib: A benchmark library for constraints (1999)

    Google Scholar 

  15. G. Katsirelos.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)

    Google Scholar 

  16. Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Proceedings of AAAI, pp. 390–396 (2005)

    Google Scholar 

  17. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535 (2001)

    Google Scholar 

  18. Quimper, C.-G., Golynski, A., López-Ortiz, A., Beek, P.V.: An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint. Constraints 10(2), 115–135 (2005)

    Article  MathSciNet  Google Scholar 

  19. Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proceedings of AAAI, vol. 2, pp. 209–215 (1996)

    Google Scholar 

  20. Régin, J.-C., Puget, J.-F.: A Filtering Algorithm for Global Sequencing Constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  21. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  22. Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic CSP. In: Proceeding of ICTAI, pp. 48–55 (1993)

    Google Scholar 

  23. Siala, M., Hebrard, E., Huguet, M.-J.: An optimal arc consistency algorithm for a particular case of sequence constraint. Constraints 19(1), 30–56 (2014)

    Article  MathSciNet  Google Scholar 

  24. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Smith, B.M.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering (1996)

    Google Scholar 

  26. Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. European Journal of Operational Research 191, 912–927 (2008)

    Article  MathSciNet  Google Scholar 

  27. van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Algorithms for Combinations of Among Constraints. Constraints 14(2), 273–292 (2009)

    Article  MathSciNet  Google Scholar 

  28. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Artigues, C., Hebrard, E., Mayer-Eichberger, V., Siala, M., Walsh, T. (2014). SAT and Hybrid Models of the Car Sequencing Problem. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics