Abstract
We compare both pure SAT and hybrid CP/SAT models for solving car sequencing problems, and close 13 out of the 23 large open instances in CSPLib. Three features of these models are crucial to improving the state of the art in this domain. For quickly finding solutions, advanced CP heuristics are important and good propagation (either by a specialized propagator or by a sophisticated SAT encoding that simulates one) is necessary. For proving infeasibility, clause learning in the SAT solver is critical. Our models contain a number of novelties. In our hybrid models, for example, we develop a linear time mechanism for explaining failure and pruning the AtMostSeqCard constraint. In our SAT models, we give powerful encodings for the same constraint. Our research demonstrates the strength and complementarity of SAT and hybrid methods for solving difficult sequencing problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Generic ILP versus specialized 0-1 ILP: An update. In: Proceedings of ICCAD, pp. 450–457 (2002)
Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007)
Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)
Biere., A., Heule., M., van Maaren., H., Walsh, T.: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings of the Sequence Constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 210–224. Springer, Heidelberg (2007)
Cambazard, H.: Résolution de problmes combinatoires par des approches fondées sur la notion dexplication. PhD thesis, Ecole des mines de Nantes (2006)
Cambazard, H., Jussien, N.: Identifying and exploiting problem structures using explanation-based constraint programming. Constraints 11(4), 295–313 (2006)
Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal of the ACM 7(3), 201–215 (1960)
Dixon, H.: Automating Pseudo-Boolean Inference within a DPLL Framework. PhD thesis, University of Oregon (2004)
Dixon, H.E., Ginsberg, M.L.: Inference Methods for a Pseudo-Boolean Satisability Solver. In: Proceedings of AAAI, pp. 635–640 (2002)
Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)
Feydy, T., Schutt, A., Stuckey, P.: Semantic Learning for Lazy Clause Generation. In: TRICS workshop, held alongside CP (2013)
Gent, I.P.: Arc Consistency in SAT. In: Proceedings of ECAI, pp. 121–125 (2002)
Gent, I.P., Walsh, T.: CSPlib: A benchmark library for constraints (1999)
G. Katsirelos.: Nogood Processing in CSPs. PhD thesis, University of Toronto (2008)
Katsirelos, G., Bacchus, F.: Generalized NoGoods in CSPs. In: Proceedings of AAAI, pp. 390–396 (2005)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC, pp. 530–535 (2001)
Quimper, C.-G., Golynski, A., López-Ortiz, A., Beek, P.V.: An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint. Constraints 10(2), 115–135 (2005)
Régin, J.C.: Generalized Arc Consistency for Global Cardinality Constraint. In: Proceedings of AAAI, vol. 2, pp. 209–215 (1996)
Régin, J.-C., Puget, J.-F.: A Filtering Algorithm for Global Sequencing Constraints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg (1997)
Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)
Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic CSP. In: Proceeding of ICTAI, pp. 48–55 (1993)
Siala, M., Hebrard, E., Huguet, M.-J.: An optimal arc consistency algorithm for a particular case of sequence constraint. Constraints 19(1), 30–56 (2014)
Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)
Smith, B.M.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering (1996)
Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF 2005 challenge problem. European Journal of Operational Research 191, 912–927 (2008)
van Hoeve, W.J., Pesant, G., Rousseau, L.-M., Sabharwal, A.: New Filtering Algorithms for Combinations of Among Constraints. Constraints 14(2), 273–292 (2009)
Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Artigues, C., Hebrard, E., Mayer-Eichberger, V., Siala, M., Walsh, T. (2014). SAT and Hybrid Models of the Car Sequencing Problem. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-07046-9_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07045-2
Online ISBN: 978-3-319-07046-9
eBook Packages: Computer ScienceComputer Science (R0)