A Knowledge Management Strategy to Identify an Expert in Enterprise

  • Matteo Gaeta
  • Rossella Piscopo
  • Luigi Rarità
  • Luigi Trevisant
  • Daniele Novi
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 7)


The aim of this paper is to define a strategy to identify, manage and take advantage of competences in the enterprise via figures of opportune experts, with consequent advantages for workers and users in terms of problem solving. In such a context, industrial aspects, such as resources localization, research time and accessibility to the organizational hierarchy and the work load, are also considered. This allows to distinguish three different phases in finding the experts: Initialization, in which a score is assigned to workers on the base of competence levels; Propagation, where the search accuracy is improved using trust and closeness measures; Localization, where updates of scores are made in terms of social and geographical positions of users/enterprises and experts. The three phases allows to identify inside an enterprise the expert, who has the best competence and is close to the resource, that is in the shortest delay possible.


Social network analysis Enterprise 2.0 Trust Candidate experts 


  1. 1.
    Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise corpora. In: Proceedings of ACM SIGIR, pp. 43–50 (2006)Google Scholar
  2. 2.
    Bailey, P., Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC 2007 enterprise track. In: The Sixteenth Text REtrieval Conference Proceeding (2008)Google Scholar
  3. 3.
    Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC-2005 enterprise track. In: The Fourteenth Text Retrieval Conference Proceedings (2006)Google Scholar
  4. 4.
    Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last ten years. Int. J. Pattern Recognit. Artif. Intell. (In Press) (2013). doi:  10.1142/S0218001414500013
  5. 5.
    Soboroff, I., de Vries, A., Crawell, N.: Overview of the TREC 2006 enterprise track. In: The Fifteenth Text REtrieval Conference Proceedings (2007)Google Scholar
  6. 6.
    Ackerman, M., Wulf, V., Pipek, V.: Sharing Expertise: Beyond Knowledge Management. MIT Press, Cambridge (2002)Google Scholar
  7. 7.
    McDonald, D.D., Ackerman,M.: Just talk to me: a field study of expertise location. In: CSCW 1998, pp. 315–324 (1998)Google Scholar
  8. 8.
    Loia, V., De Maio, C., Fenza, G., Orciuoli, F., Senatore, S.: An enhanced approach to improve enterprise competency management, In: 2010 IEEE World Congress on Computational Intelligence, WCCI (2010)Google Scholar
  9. 9.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of ACL 2005, pp. 363–370 (2005)Google Scholar
  10. 10.
    Zhang, J., Tang, J., Li, J.: Expert finding in a social network. In: Kotagiri R., et al. (eds.) DASFAA 2007. Lecture Notes in Computer Science vol. 4443, pp. 1066–1069. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vision. 70(1), 41–54 (2006)Google Scholar
  12. 12.
    Golbeck, J.: Combining Provenance with trust in social networks for semantic web content filtering. In: Moreau L. et al (eds.) IPAW 2006. Lecture Notes in Computer Science, vol. 4145, pp. 101–108. Springer (2006)Google Scholar
  13. 13.
    Okamoto, K., Chen, W., Li, X.Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata F.P. et al. (eds.) FAW 2008. Lecture Notes in Computer Science, vol. 5059, pp. 186–195. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Smirnova, E., Balog, K.: A User-oriented model for expert finding. In: Clough P. et al. (eds.) ECIR 2011. Lecture Notes in Computer Science, vol. 6611, pp. 580–592. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., Vesci, G.: Choosing the right crowd: expert finding in social networks. In: EDBT ’13 Proceedings of the 16th International Conference on Extending Database Technology, pp. 637–648. ACM, New York (2013)Google Scholar
  16. 16.
    Demartini, G., Gaugaz, J., Nejdl, W.: A vector space model for ranking entities and its application to expert search. In: Boughanem M. et al. (eds.) ECIR 2009. Lecture Notes in Computer Science, vol. 5478, pp. 189–201. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matteo Gaeta
    • 1
  • Rossella Piscopo
    • 1
  • Luigi Rarità
    • 1
  • Luigi Trevisant
    • 2
  • Daniele Novi
    • 3
  1. 1.Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica ApplicataUniversity of SalernoFiscianoItaly
  2. 2.Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica Applicata, Centro di Eccellenza su Metodi e Sistemi per Aziende CompetitiveUniversity of SalernoFiscianoItaly
  3. 3.Dipartimento di InformaticaUniversity of SalernoFiscianoItaly

Personalised recommendations