Skip to main content

Quantification of Temporal Fault Trees Based on Fuzzy Set Theory

  • Conference paper

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 286)

Abstract

Fault tree analysis (FTA) has been modified in different ways to make it capable of performing quantitative and qualitative safety analysis with temporal gates, thereby overcoming its limitation in capturing sequential failure behaviour. However, for many systems, it is often very difficult to have exact failure rates of components due to increased complexity of systems, scarcity of necessary statistical data etc. To overcome this problem, this paper presents a methodology based on fuzzy set theory to quantify temporal fault trees. This makes the imprecision in available failure data more explicit and helps to obtain a range of most probable values for the top event probability.

Keywords

  • Dependability Analysis
  • Fault Tree Analysis
  • Fuzzy Logic
  • Uncertainty analysis
  • Temporal Fault Trees

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications. NASA office of safety and mission assurance, Washington DC (2002).

    Google Scholar 

  2. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault Trees and Sequence Dependencies. In: Proceedings of Annual Reliability and Maintainability Symposium, pp. 286–293. IEEE, Los Angeles (1990)

    CrossRef  Google Scholar 

  3. Bruns, G., Anderson, S.: Validating Safety Models with Fault Trees. In: Górski, J. (ed.) Safecomp 1993, pp. 21–30. Springer, London (1993)

    Google Scholar 

  4. Walker, M., Papadopoulos, Y.: Qualitative temporal analysis: Towards a full implementation of the Fault Tree Handbook. Control Eng. Pract. 17, 1115–1125 (2009)

    CrossRef  Google Scholar 

  5. Mahmood, Y.A., Ahmadi, A., Verma, A.K., Srividya, A., Kumar, U.: Fuzzy fault tree analysis: A review of concept and application. Int. J. Syst. Assur. Eng. Manag. 4, 19–32 (2013)

    CrossRef  Google Scholar 

  6. Walker, M.: Pandora: A Logic for the Qualitative Analysis of Temporal Fault Trees. PhD Thesis, University of Hull (2009)

    Google Scholar 

  7. Tanaka, H., Fan, L.T., Lai, F.S., Toguchi, K.: Fault-Tree Analysis by Fuzzy Probability. IEEE Trans. Reliab. R-32, 453–457 (1983)

    CrossRef  Google Scholar 

  8. He, L., Huang, H., Zuo, M.: Fault Tree Analysis Based on Fuzzy Logic. In: Proceedings of Annual Reliability and Maintainability Symposium, pp. 77–82. IEEE, FL (2007)

    Google Scholar 

  9. Ferdous, R., Khan, F., Veitch, B., Amyotte, P.R.: Methodology for computer aided fuzzy fault tree analysis. Process Saf. Environ. Prot. 87, 217–226 (2009)

    CrossRef  Google Scholar 

  10. Suresh, P.V., Babar, A.K., Raj, V.V.: Uncertainty in fault tree analysis: A fuzzy approach. Fuzzy Sets Syst. 83, 135–141 (1996)

    CrossRef  Google Scholar 

  11. Mao, G., Tu, J., Du, H.: Reliability Evaluation Based on Fuzzy Fault Tree. In: IEEE 17th International Conference on Industrial Engineering and Engineering Management (IE&EM), pp. 963–966. IEEE, Xiamen (2010)

    Google Scholar 

  12. Zadeh, L.: Fuzzy logic. Computer (Long. Beach. Calif.) 21, 83–93 (1988)

    Google Scholar 

  13. Edifor, E., Walker, M., Gordon, N.: Quantification of Priority-OR Gates in Temporal Fault Trees. In: Ortmeier, F., Lipaczewski, M. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 99–110. Springer, Heidelberg (2012)

    Google Scholar 

  14. Edifor, E., Walker, M., Gordon, N.: Quantification of Simultaneous-AND Gates in Temporal Fault Trees. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) New Results in Dependability & Comput. Syst. AISC, vol. 224, pp. 141–151. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  15. Zadeh, L.: Fuzzy Sets. Inf. Control. 8, 338–353 (1965)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Cai, K.: System failure engineering and fuzzy methodology: an introductory overview. Fuzzy Sets Syst. 83, 113–133 (1996)

    CrossRef  Google Scholar 

  17. Fussell, J.B., Aber, E.F., Rahl, R.G.: On the Quantitative Analysis of Priority-AND Failure Logic. IEEE Trans. Reliab. R-25, 324–326 (1976)

    CrossRef  Google Scholar 

  18. Isograph Limited.: Reliability Workbench Version 11 User Guide (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohag Kabir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kabir, S., Edifor, E., Walker, M., Gordon, N. (2014). Quantification of Temporal Fault Trees Based on Fuzzy Set Theory. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland. Advances in Intelligent Systems and Computing, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-319-07013-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07013-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07012-4

  • Online ISBN: 978-3-319-07013-1

  • eBook Packages: EngineeringEngineering (R0)