Skip to main content

Hybrid Nanoimprint-Soft Lithography for Highly Curved Surface with Sub-15 nm Resolution

  • Chapter
  • First Online:
Book cover Lab-on-Fiber Technology

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 56))

Abstract

Nanoimprint lithography is a high-resolution, high-throughput and low-cost technology to pattern nanostructure, but it only works well on planar surface. To solve this issue, a hybrid nanoimprint-soft Lithography (HNSL) was developed to pattern nanostructures on highly curved surfaces (e.g. the sidewall of an optical fiber). Moreover, double transfer UV-curing nanoimprint lithography, an improved version of HNSL, was introduced to enable high fidelity pattern transfer. Optical fibers can be patterned using this technology, and that opened the door to numerous applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978)

    Article  ADS  Google Scholar 

  2. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)

    Article  ADS  Google Scholar 

  3. J. Martin, F. Ouellette, Novel writing technique of long and highly reflective in-fibre gratings. Electron. Lett. 30(10), 811–812 (1994)

    Article  ADS  Google Scholar 

  4. J. Albert, S. Theriault, F. Bilodeau, D.C. Johnson, K.O. Hill, P. Sixt, M.J. Rooks, Minimization of phase errors in long fiber Bragg grating phase masks made using electron beam lithography. IEEE Photonics Technol. Lett. 8(10), 1334–1336 (1996)

    Article  ADS  Google Scholar 

  5. M.L. von Bibra, A. Roberts, J. Canning, Fabrication of long-period fiber gratings by use of focused ion-beam irradiation. Opt. Lett. 26(11), 765–767 (2001)

    Article  ADS  Google Scholar 

  6. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Nanoimprint lithography. J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996)

    Article  Google Scholar 

  7. Z.W. Li, Y.N. Gu, L. Wang, H.X. Ge, W. Wu, Q.F. Xia, C.S. Yuan, Y. Chen, B. Cui, R.S. Williams, Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 9(6), 2306–2310 (2009)

    Article  ADS  Google Scholar 

  8. M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 84(26), 5299–5301 (2004)

    Article  ADS  Google Scholar 

  9. L.J. Guo, Recent progress in nanoimprint technology and its applications. J. Phys. D-Appl. Phys. 37(11), R123–R141 (2004)

    Article  ADS  Google Scholar 

  10. E. Menard, M.A. Meitl, Y. Sun, J.-U. Park, D.J.-L. Shir, Y.-S. Nam, S. Jeon, J.A. Rogers, Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107(4), 1117–1160 (2007)

    Article  Google Scholar 

  11. Q.F. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X.M. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  ADS  Google Scholar 

  12. W. Wu, E. Kim, E. Ponizovskaya, Y. Liu, Z. Yu, N. Fang, Y.R. Shen, A.M. Bratkovsky, W. Tong, C. Sun, X. Zhang, S.Y. Wang, R.S. Williams, Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl. Phys. A Mater. Sci. Process. 87(2), 143–150 (2007)

    Article  ADS  Google Scholar 

  13. D.J. Cho, W. Wu, E. Ponizovskaya, P. Chaturvedi, A.M. Bratkovsky, S.Y. Wang, X. Zhang, F. Wang, Y.R. Shen, Ultrafast modulation of optical metamaterials. Opt. Express 17(20), 17652–17657 (2009)

    Article  ADS  Google Scholar 

  14. W. Wu, B. Cui, X.Y. Sun, W. Zhang, L. Zhuang, L.S. Kong, S.Y. Chou, Large area high density quantized magnetic disks fabricated using nanoimprint lithography. J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998)

    Article  Google Scholar 

  15. H. Oshima, H. Kikuchi, H. Nakao, K.-I. Itoh, T. Kamimura, T. Morikawa, K. Matsumoto, T. Umada, H. Tamura, K. Nishio, H. Masuda, Detecting dynamic signals of ideally ordered nanohole patterned disk media fabricated using nanoimprint lithography. Appl. Phys. Lett. 91(2), 22508 (2007)

    Google Scholar 

  16. W. Wu, M. Hu, F.S. Ou, Z.Y. Li, R.S. Williams, Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy. Nanotechnology 21(25), 255502 (2010)

    Google Scholar 

  17. M. Hu, F.S. Ou, W. Wu, I. Naumov, X.M. Li, A.M. Bratkovsky, R.S. Williams, Z.Y. Li, Gold nanofingers for molecule trapping and detection. J. Am. Chem. Soc. 132(37), 12820–12822 (2010)

    Article  Google Scholar 

  18. V.N. Truskett, M.P.C. Watts, Trends in imprint lithography for biological applications. Trends Biotechnol. 24(7), 312–317 (2006)

    Article  Google Scholar 

  19. P.F. Murphy, K.J. Morton, Z. Fu, S.Y. Chou, Nanoimprint mold fabrication and replication by room-temperature conformal chemical vapor deposition. Appl. Phys. Lett. 90(20) (2007)

    Google Scholar 

  20. Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37(5), 550–575 (1998)

    Article  Google Scholar 

  21. Y.N. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  ADS  Google Scholar 

  22. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, G.M. Whitesides, Improved pattern transfer in soft lithography using composite stamps. Langmuir 18(13), 5314–5320 (2002)

    Article  Google Scholar 

  23. H. Schmid, B. Michel, Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33(8), 3042–3049 (2000)

    Article  ADS  Google Scholar 

  24. H.X. Ge, W. Wu, Z.Y. Li, G.Y. Jung, D. Olynick, Y.F. Chen, J.A. Liddle, S.Y. Wang, R.S. Williams, Cross-linked polymer replica of a nanoimprint mold at 30 nm half-pitch. Nano Lett. 5(1), 179–182 (2005)

    Article  ADS  Google Scholar 

  25. G.Y. Jung, Z.Y. Li, W. Wu, Y. Chen, D.L. Olynick, S.Y. Wang, W.M. Tong, R.S. Williams, Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21(4), 1158–1161 (2005)

    Article  Google Scholar 

  26. M.K. Chaudhury, G.M. Whitesides, Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7(5), 1013–1025 (1991)

    Article  Google Scholar 

  27. P.J. Yoo, S.J. Choi, J.H. Kim, D. Suh, S.J. Baek, T.W. Kim, H.H. Lee, Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing. Chem. Mater. 16(24), 5000–5005 (2004)

    Article  Google Scholar 

  28. Y. Shen, L. Yao, Z. Li, J. Kou, Y. Cui, J. Bian, C. Yuan, H. Ge, W.-D. Li, W. Wu, Y. Chen, Double transfer UV-curing nanoimprint lithography. Nanotechnology 24(46), 465304 (2013)

    Google Scholar 

  29. R. Martinez-Duarte, G.T. Teixidor, P.P. Mukherjee, Q. Kang, M.J. Madou, in Perspectives of micro and nanofabrication of carbon for electrochemical and microfluidic applications, in microfluidics and microfabrication, ed. by S. Chakraborty (Springer, US, 2010), pp. 181–263

    Google Scholar 

  30. S. Kumagai, H. Tajima, M. Sasaki, Flow analysis of photoresist spray coating towards improving coverage on three-dimensional structures. Jpn. J. Appl. Phys. 50(10) (2011)

    Google Scholar 

  31. N.P. Pham, E. Boellaard, J.N. Burghartz, P.M. Sarro, Photoresist coating methods for the integration of novel 3-D RF microstructures. J. Microelectromech. Syst. 13(3), 491–499 (2004)

    Article  Google Scholar 

  32. V.K. Singh, M. Sasaki, K. Hane, M. Esashi, Flow condition in resist spray coating and patterning performance for three-dimensional photolithography over deep structures. Jpn. J. Appl. Phys. Part 1 (Regular Papers Short Notes and Review Papers) 43(4B), 2387–2391 (2004)

    Google Scholar 

  33. V.K. Singh, M. Sasaki, J.H. Song, K. Hane, Technique for preparing defect-free spray coated resist film on three-dimensional micro-electromechanical systems. Jpn. J. Appl. Phys. Part 1 (Regular Papers Brief Communications and Review Papers) 44(4A), 2016–2020 (2005)

    Google Scholar 

  34. X. Liang, H. Tan, Z. Fu, S.Y. Chou, Air bubble formation and dissolution in dispensing nanoimprint lithography. Nanotechnology 18(2) (2007)

    Google Scholar 

  35. K. Usuki, S. Wakamatsu, T. Oomatsu, K. Kodama, K. Kodama, in Approaches to rapid resist spreading on dispensing based UV-NIL, Alternative Lithographic Technologies III, ed. by D.J.C. Herr (2011)

    Google Scholar 

  36. J. Linden, C. Thanner, B. Schaaf, S. Wolff, B. Laegel, E. Oesterschulze, Spray coating of PMMA for pattern transfer via electron beam lithography on surfaces with high topography. Microelectron. Eng. 88(8), 2030–2032 (2011)

    Article  Google Scholar 

  37. M. Toepper, M. Wilke, J. Roeder, T. Fischer, C. Lopper, in IEEE, Coating Techniques for 3D-Packaging Applications, 2012 IEEE 62nd Electronic Components and Technology Conference, (2012) pp. 1673–1676

    Google Scholar 

  38. C.J. Brinker, G.C. Frye, A.J. Hurd, C.S. Ashley, Fundamentals of sol-gel dip coating. Thin Solid Films 201(1), 97–108 (1991)

    Article  ADS  Google Scholar 

  39. P. Yimsiri, M.R. Mackley, Spin and dip coating of light-emitting polymer solutions: matching experiment with modelling. Chem. Eng. Sci. 61(11), 3496–3505 (2006)

    Article  Google Scholar 

  40. Y.B. Kim, H.K. Kim, J.W. Hong, Epoxy-acrylic microgels in electrodeposition coating films. Surf. Coat. Technol. 153(2–3), 284–289 (2002)

    Article  Google Scholar 

  41. R. Liu, F. An, S. Zhang, J. Luo, X. Liu, Photosensitive acrylate copolymer for electrodeposition photoresist. Polym. Sci. Ser. A 55(4), 225–232 (2013)

    Article  Google Scholar 

  42. N.P. Pham, D.S. Tezcan, W. Ruythooren, P. De Moor, B. Majeed, K. Baert, B. Swinnen, Photoresist coating and patterning for through-silicon via technology. J. Micromech. Microeng. 18(12) (2008)

    Google Scholar 

  43. Y. Shen, L. Yao, Z. Li, J. Kou, Y. Cui, J. Bian, C. Yuan, H. Ge, W.-D. Li, W. Wu, Y. Chen, Double transfer UV-curing nanoimprint lithography. Nanotechnology 24(46), 465304 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ge, H., Wu, W., Li, WD. (2015). Hybrid Nanoimprint-Soft Lithography for Highly Curved Surface with Sub-15 nm Resolution. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_5

Download citation

Publish with us

Policies and ethics