Skip to main content

Photonic Crystal Fiber as a Lab-in-Fiber Optofluidic Platform

  • Chapter
  • First Online:
Lab-on-Fiber Technology

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 56))

Abstract

The ability to design and fabricate photonic crystal fiber (PCF) of seemingly unlimited, axially aligned air cladding structures for vastly different optical properties is arguably one of the most significant recent advances in more than half a century of modern fiber optics. The combined characteristics of PCF as both a waveguide for laser transmission/excitation and a microfluidic cell for gas/liquid transport/reactions make it a unique lab-in-fiber platform for chemical and biological processes and their real-time monitoring. The easy access of the fiber air channels for surface functionalization at the molecular and nano scales and the ready incorporation of long-period gratings (LPG) as an integral part of the PCF-based lab-in-fiber platform further expand the realm of its applications. The aim of this chapter is to review the state-of-the-art advances in the science and technology of PCF lab-in-fiber optofluidics relevant to technologically important chemical and biological events and their measurements. The chapter will begin with a brief introduction of the fundamentals, fabrication, optical properties, and general areas of applications of PCF. PCF as a natural lab-in-fiber optofluidics will be highlighted and contrasted with lab-on-chip optofluidics derived from planar silicon device technology. We will then discuss the chemical or biological surface treatment of PCF air channels to impart specific functionality for molecular recognition, the immobilization of plasmonic nanostructures at the channel surface for surface-enhanced Raman scattering and the in situ laser spectroscopy measurements. Considerable focus will be placed on the design, development, and implementation of highly index-sensitive PCF-LPG lab-in-fiber optofluidics for in situ investigation of immunoassays as label-free bioreactors and biosensors as well as for real-time monitoring of layer-by-layer assembly of stimuli-responsive polyelectrolyte thin films as nano-sensors and nano-actuators. We will conclude the chapter by sharing our views on future opportunities and challenges in the exciting field of PCF lab-in-fiber optofluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Knight, Photonic crystal fibres. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  2. P.St.J. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  3. J.C. Knight, T.A. Birks, P.S.J. Russell, in Optics of Nanostructured Materials, eds. by V.A. Markel, T.F. George (Wiley, New York, 2001), pp. 39–71

    Google Scholar 

  4. T.A. Birks, P.J. Roberts, P.J. Russell, D.M. Atkin, T.J. Shepherd, Full 2-D photonic bandgaps in silica/air structures. Electron. Lett. 31, 1941–1943 (1995)

    Article  Google Scholar 

  5. J.C. Knight, J. Broeng, T.A. Birks, P.J. Russell, Photonic band gap guidance in optical fibers. Science 282, 1476–1478 (1998)

    Article  Google Scholar 

  6. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.J. Russell, P.J. Roberts, D.C. Allan, Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999)

    Article  Google Scholar 

  7. J.C. Knight, P.J. Russell, New ways to guide light. Science 296, 276–277 (2002)

    Article  Google Scholar 

  8. P.V. Kaiser, H.W. Astle, Low-loss single-material fibers made from pure fused silica. Bell Syst. Tech. J. 53, 1021–1039 (1974)

    Article  Google Scholar 

  9. A. Cerqueira S.Jr., F. Luan, C.M.B. Cordeiro, A.K. George, J.C. Knight, Hybrid photonic crystal fiber, Opt. Express 14, 926–931 (2006)

    Google Scholar 

  10. J.C. Knight, T.A. Birks, P.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996)

    Article  ADS  Google Scholar 

  11. R. Bise, D.J. Trevor, Solgel-derived mircrostructured fibers: fabrication and characterization, in Conference on Optical Fiber Communication, Technical Digest Series, Anaheim, CA, vol. 3 pp. 269–271 (2005)

    Google Scholar 

  12. R. Bise, Manufacturing of microstructured optical fibers (2006). http://www.cns.cornell.edu/documents/RyanBiseOFSLaboratories.pdf

  13. G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  ADS  Google Scholar 

  14. H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  ADS  Google Scholar 

  15. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press, New York, 1999)

    Google Scholar 

  16. Y.Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 85, 5182–5184 (2004)

    Article  ADS  Google Scholar 

  17. Z. Huang, A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4, 283–293 (2005)

    Google Scholar 

  18. N. Homann, Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008)

    Article  Google Scholar 

  19. F. Li, J. Zhuang, G. Jiang, H. Tang, A. Xia, L. Jaing, Y. Song, Y. Li, D. Zhu, A rewritable optical data storage material system by [2 + 2] photocycloreversion—photocycloaddition. Chem. Mater. 20, 1194 (2008)

    Article  Google Scholar 

  20. M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005)

    Article  Google Scholar 

  21. J.S.Y. Chen, T.G. Euser, N.J. Farrer, P.J. Sadler, M. Scharrer, P.J. Russell, Photochemistry in photonic crystal fiber nanoreactors. Chem.—Eur. J. 16, 5607–5612 (2010)

    Article  Google Scholar 

  22. J.S.Y. Chen, T.G. Euser, G.O. Williams, A.C. Jones, P.S.T. Russell, Photoswitching in Photonic Crystal Fiber, in Conference on Optical Sensors, Karlsruhe Germany, (Optical Society of America, 2010), paper SThB4

    Google Scholar 

  23. W.M. Sharman, C.M. Allen, J.E. van Lier, Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today 4, 507–517 (1999)

    Article  Google Scholar 

  24. A.M. Cubillas, M. Schmidt, M. Scharrer, T.G. Euser, B.J.M. Etzold, N. Taccardi, P. Wasserscheid, P.S.J. Russell, Ultra-low concentration monitoring of catalytic reactions in photonic crystal fiber. Chem.—Eur. J. 18, 1586–1590 (2012)

    Article  Google Scholar 

  25. V.P. Minkovich, D. Monzon-Hernandez, J. Villatoro, G. Badenes, Microstructured optical fiber coated with thin films for gas and chemical sensing. Opt. Express 14, 8413–8418 (2006)

    Article  ADS  Google Scholar 

  26. M. Skorobogatiy, Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors. J. Sens. 2009, 524237 (2009)

    Article  Google Scholar 

  27. T.M. Monro, S. Warren-Smith, E.P. Schartner et al., Sensing with suspended-core optical fibers. Opt. Fiber Technol. 16, 343–356 (2010)

    Article  ADS  Google Scholar 

  28. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  ADS  Google Scholar 

  29. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, Y. Yao, Hollow core photonic crystal fiber surface-enhanced Raman probe, Appl. Phys. Lett. 89, Article ID 204101, (2006)

    Google Scholar 

  30. Y. Zhang, C. Shi; C. Gu, L. Seballos, J.Z. Zhang, Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering, Appl. Phys. Lett. 90, Article ID 193504 (2007)

    Google Scholar 

  31. F.M. Cox, A. Argyros, M.C.J. Large, S. Kalluri, Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt. Express 15, 13675–13681 (2007)

    Article  ADS  Google Scholar 

  32. A. Amezcua-Correa, J. Yang, C.E. Finlayson, A.C. Peacock, J.R. Hayes, P.J.A. Sazio, J.J. Baumberg, S.M. Howdle, Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv. Funct. Mater. 17, 2024–2030 (2007)

    Article  Google Scholar 

  33. Yan, J. Liu, C. Yang, G. Jin, C. Gu, and L. Hou, Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe, Opt. Express 16, 8300–8305 (2008)

    Google Scholar 

  34. Y. Han, S. Tan, M.K. Khaing Oo, D. Pristinski, S. Sukhishvili, H. Du, Towards full-length accumulative surface-enhanced raman scattering-active photonic crystal fibers. Adv. Mater. 22, 2647–2651 (2010)

    Google Scholar 

  35. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267, 1629–1632 (1995)

    Article  ADS  Google Scholar 

  36. M. Erol, Y. Han, S.K. Stanley, C.M. Stafford, H. Du, S. Sukhishvili, SERS not to be taken for granted in the presence of oxygen. J. Am. Chem. Soc. 131, 7480–7481 (2009)

    Article  Google Scholar 

  37. M.K. Khaing Oo, Y. Han, R. Martini, S. Sukhishvili, H. Du, Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles, Opt. Lett. 34, 968–970 (2009)

    Google Scholar 

  38. T.P. White, R.C. McPhedran, C.M. De Sterke, L.C. Botten, M.J. Steel, Confinement losses in microstructured optical fibers. Opt. Lett. 26, 1660–1662 (2001)

    Article  ADS  Google Scholar 

  39. Y. Zhu, H. Du, R. Bise, Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing. Opt. Express 14, 3541–3546 (2006)

    Article  ADS  Google Scholar 

  40. M.K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, H. Du, Structure fits the purpose: Photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy, Opt. Lett. 35, 466–468 (2010)

    Google Scholar 

  41. H.W. Lee, Y. Liu, K.S. Chiang, Writing of long-period gratings in conventional and photonic-crystal polarization-maintaining fibers by CO2-laser pulses. IEEE Photon. Technol. Lett. 20, 132–134 (2008)

    Article  ADS  Google Scholar 

  42. B.H. Kim, Y. Park, T.J. Ahn, B.H. Lee, Y. Chung, U.C. Paek, W.T. Han, Residual stress relaxation in the core of optical fiber by CO2 laser radiation. Opt. Lett. 26, 1657–1659 (2001)

    Article  ADS  Google Scholar 

  43. D.D. Davis, T.K. Gaylord, E.N. Glytsis, S.C. Mettler, Very-high-temperature stable CO2 laser-induced longperiod fibre gratings. Electron. Lett. 35, 740–742 (1999)

    Article  Google Scholar 

  44. L. Rindorf, J.B. Jensen, M. Dufva, L.H. Pedersen, P.E. Høiby, O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14, 8224–8231 (2006)

    Article  ADS  Google Scholar 

  45. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, H. Du, Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. Biosens. Bioelectron. 26, 4774–4778 (2011)

    Article  Google Scholar 

  46. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997)

    Article  Google Scholar 

  47. S. Pavlukhina, S. Sukhishvili, Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv. Drug Deliver. Rev. 63, 822–836 (2011)

    Article  Google Scholar 

  48. E. Kharlampieva, V. Kozlovskaya, S.A. Sukhishvili, Layer-by-layer hydrogen-bonded polymer films: from fundamentals to applications. Adv. Mater. 21, 3053–3065 (2009)

    Article  Google Scholar 

  49. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006)

    Article  Google Scholar 

  50. F. Tian, J. Kanka, S. Sukhishvili, H. Du, Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films. Opt. Lett. 37, 4299–4301 (2012)

    Article  ADS  Google Scholar 

  51. Y. Zhu, Z. He, J. Kanka, H. Du, Numerical analysis of refractive index sensitivity of long-period gratings in photonic crystal fiber. Sens. Actuators, B 129, 99–105 (2008)

    Article  Google Scholar 

  52. S. Pavlukhina, Y. Lu, A. Patimetha, M. Libera, S. Sukhishvili, Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules 11, 3448 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter contains a significant amount of our prior and ongoing studies funded by the US National Science Foundation under grants ECCS-0404002, ECCS-0922175 and DMR-0906474. We thank the various colleagues of ours for their contributions to the work reviewed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tian, F., Sukhishvili, S., Du, H. (2015). Photonic Crystal Fiber as a Lab-in-Fiber Optofluidic Platform. In: Cusano, A., Consales, M., Crescitelli, A., Ricciardi, A. (eds) Lab-on-Fiber Technology. Springer Series in Surface Sciences, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-06998-2_15

Download citation

Publish with us

Policies and ethics