• John Canning
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 56)


The laboratory-in-a-fibre was originally envisaged around structured optical fibres and their two dimensional, potentially three-dimensional (3-D), variation in structure they enabled. In contrast to D-shaped fibres which have long been used as a test bed for novel optical components and more recently as the substrate for lab-on-a-chip technologies, or lab-on-fibre , it was a proposal which looked into the future of optical fibres well beyond optical transport conduits, imagining fibres as complex 3-D instruments with multiple waveguides and waveguide devices, both along and across the fibre to enable unprecedented multiple functionality and density. Whereas the D-fibre platform has since evolved into an enormously attractive “lab-on-a-fibre” stage, the vision remains largely unfulfilled but technological advances and new ideas will make its realisation inevitable, if slow. This included the merger of 3-D optical fibre innovations with growing lab-on-fibre innovations. Although the two-dimensional structuring of the optical fibres was central to the proposal of lab-in-a-fibre, it nonetheless has some key restrictions defined by the top-down approach to optical fibre production. Macroscopic drawing down of fibres places a directional impost that gives rise to the two-dimensional layout of micro and nano structured fibres; i.e. control is only in the cross-section of the fibre. As well there are huge thermodynamic imposts integrating materials into silica itself providing motivation for different approaches to be explored. Here, recently reported bottom-up self-assembly approaches to fabricate waveguides that have the potential of enabling total control of the nanostructure are reviewed. These can be done at room temperature demonstrating in principle how the problems can be solved and simultaneously legitimising a new concept—the lab-in-a-microfibre.


Optical Fibre Dynamic Light Scattering Fibre Bragg Grating Photonic Crystal Fibre Nitrogen Vacancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



As with any entry into a broad new field, it is only possible with the contributions of many people. The following people, by institution and in alphabetical order, are acknowledged for various contributions that were carried out to make the lab-in-a-microfibre potentially realisable:

The University of Sydney—Fahad Khaksar Ali, Dr. Mattias Aslund, Jean-Gabriell Brisset, Dr. Kevin Cook, Prof. Maxwell J. Crossley, Stephanie Eid, Oscar Fawkes, Dr. George Huyang, Hari Athitha Jeyaseelan, Lachlan Lindoy, Nicolas Losio, Lucas Moura, Sarah Murphy, Miles Ma, Masood Naqshbandi, Melissa Nash, Dr. Liyang Shao, Dr. Jeff Shi, Dr. Patrick Trimby, Elijah Tyedmers, Hadrien Weil; University of NSW – Dr. Yanhua Liu, Prof. Gang-Ding Peng; The University of Technology—Dr. Alison Beavis, Dr. David Bishop, Prof. Andrew McDonagh, The Royal Melbourne Institute of Technology (RMIT) – Dr. Brant Gibson; Wollongong University – Dr. Donqi Shi; Universite de Paris Sud, France – Dr. Matthieu Lancry (Marie Curie Exchange, EC FP7 Program).

Various funding sources are aslo acknowledged, particularly from the Australian Research Council (ARC). Both Marie Curie Exchange and EC FP7 Program funding helped to support exchange visits by Hadrien Weil, Jean-Gabriel Brisset and Elodie Medeiros from the Universite de Paris Sud, France. Lucas Moura was supported by the “Conselho Nacional de Desevolvimento Científico e Tecnológico” (CNPq) Brazil. M. Naqshbandi received a Gritton Student Scholarship and Liyang Shao an Australian Endeavour Research Fellowship. Hari Athitha Jeyaseelan, Melissa Nash, Lachlan Lindoy and Miles Ma were supported by IPL Summer Scholarships. Oscar Fawkes was supported with some project funding from the Foundation of Inorganic Chemistry, at The University of Sydney.


  1. 1.
    J. Canning, New trends in structured optical fibres for telecommunications and sensing (Invited). in 5th International Conference on Optical Communications and Networks and the 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006) (Chengdu, China, 2006)Google Scholar
  2. 2.
    P. Fenter, L. Cheng, S. Rihs, M. Machesky, M.J. Bedzyk, N.C. Sturchio, Electrical double-layer structure at the rutile-water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci. 225, 154 (2000)CrossRefGoogle Scholar
  3. 3.
    Water in Biomaterials Surface Science, ed. by M. Morra (Wiley, New York, 2001)Google Scholar
  4. 4.
    I.-F.W. Kuo, C.J. Mundy, An ab Initio molecular dynamics study of the aqueous liquid-vapor interface. Science 303(5658), 658–660 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J. Canning, E. Buckley, S. Huntington, K. Lyytikäinen, Using multi-microchannel capillaries for determination of the zeta potential of a microfluidic channel. Electrochim. Acta 49, 3581–3586 (2004)CrossRefGoogle Scholar
  6. 6.
    J. Canning, M. Stevenson, T.K. Yip, S.K. Lim, C. Martelli, White light sources based on multiple precision selective micro-filling of structured optical waveguides. Opt. Express 16(20), 15700–15708 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Pilevar, K. Edinger, W. Atia, I. Smolyaninov, C. Davis, Focused ion-beam fabrication of fiber probes with well-defined apertures for use in near-field scanning optical microscopy. Appl. Phys. Lett. 72(24), 3133–3135 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J. Canning, M. Åslund, Applications of CO2 laser processing of optical waveguides. in Australian Conference on Optical Fibre Technology (ACOFT’99) (The University of Sydney, NSW, Australia 1999)Google Scholar
  9. 9.
    H. Lehmann, S. Bruckner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, Toward photonic crystal fiber based distributed chemosensors. Proc. SPIE 5855, 419 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    B.C. Gibson, S.T. Huntington, S. Rubanov, P. Olivero, K. Digweed, J. Canning, J. Love, Exposure and characterization of nanostructured hole arrays in tapered photonic crystal fibers using a combined FIB/SEM technique. Opt. Express 13(22), 9023–9028 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lai, K. Zhou, L. Zhang, I. Bennion, Microchannels in conventional single-mode fibers. Opt. Lett. 31, 2559–2561 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, S. Huntington, Micromachining structured optical fibres using focussed ion beam (FIB) milling. Opt. Lett. 32(12), 1575–1577 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C.M.B. Cordeiro, C.J.S. de Matos, E.M. dos Santos, A. Bozolan, J.S.K. Ong, T. Facincani, G. Chesini, A.R. Vaz, C.H.B. Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre”, Meas. Sci. Technol. 18, 3075 (2007)ADSGoogle Scholar
  14. 14.
    Y-J. Rao, M. Deng, D-W. Duan, X.-C. Yang, T. Zhu, G.-H. Cheng, Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser. Opt. Express 15, 14123–14128 (2007)Google Scholar
  15. 15.
    M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, A. Cusano, Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes. Nano 6(4), 3163–3170 (2012)Google Scholar
  16. 16.
    M. Consales, M. Pisco, A. Cusano, Lab-on-fiber technology: a new avenue for optical nanosensors. Phot. Sens. 2(4), 289–314 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    R.B. Dyott, J. Bellow, Polarisation-holding directional coupler made from elliptically cored fibre having a D section. Electron. Lett. 19(16), 601 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    R.B. Dyott, J. Bello, V.A. Handerek, Indium-coated D-shaped-fiber polarizer. Opt. Lett. 12, 287–289 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    S.C. Warren-Smith, H. Ebendorff-Heidepriem, T.C. Foo, R. Moore, C. Davis, T.M. Monro, Exposed-core microstructured optical fibers for real-time fluorescence sensing. Opt. Express 17, 18533–18542 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Krebs, P. Feorino, D. Warfield, G. Schochetman, DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239, 292–295 (1988)Google Scholar
  21. 21.
    R.J. Steffan, R.M. Atlas, DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environ. Microbiol. 54(9), 2185–2191 (1988)Google Scholar
  22. 22.
    Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, T.M. Monro, Light confinement within nanoholes in nanostructured optical fibers. Opt. Express 18, 26018–26026 (2010)Google Scholar
  23. 23.
    C.M. Rollinson, S.T. Huntington, B.C. Gibson, S. Rubanov, J. Canning, Characterization of nanoscale features in tapered fractal and photonic crystal fibers. Opt. Express 19(3), 1860–1865 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Fuochi, J.R. Hayes, K. Furusawa, W. Belardi, J.C. Baggett, T.M. Monro, D.J. Richardson, Polarization mode dispersion reduction in spun large mode area silica holey fibres. Opt. Express 12(9), 1972–1977 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    A. Michie, J. Canning, I. Bassett, J. Haywood, K. Digweed, A. Lau, D. Scandurra, M. Aslund, B. Ashton, M. Stevenson, J. Digweed, Spun elliptically birefringent photonic crystal fibre. Opt. Express 15(4), 1811–1816 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Andrew Michie, John Canning, Ian Bassett, John Haywood, Katja Digweed, Brian Ashton, Michael Stevenson, Justin Digweed, Alfred Lau, Daniel Scandurra, Spun elliptically birefringent photonic crystal fibre for current sensing. Meas. Sci. Tech. 18(10), 3070–3075 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Argyros, J. Pla, F. Ladouceur, L. Poladian, Circular and elliptical birefringence in spun microstructured optical fibres. Opt. Express 17, 15983–15990 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Y.K. Chamorovsky, N.I. Starostin, S.K. Morshnev, V.P. Gubin, M.V. Ryabko, A.I. Sazonov, I.’L. Vorob’ev, Spun microstructured optical fibres for Faraday effect current sensors. Quant. Electron. 39, 1074 (2009)Google Scholar
  29. 29.
    J. Ballato, P. Dragic, Rethinking Optical Fiber: New Demands, Old Glasses. J. Am. Chem. Soc. 96(9), 2675–2692 (2013)Google Scholar
  30. 30.
    J. Canning, W. Padden, D. Boskovic, M. Naqshbandi, H. de Bruyn, M.J. Crossley, Manipulating and controlling the evanescent field within optical waveguides using high index nanolayers. Opt. Mat. Express 1(2), 192–200 (2011)CrossRefGoogle Scholar
  31. 31.
    M.F. Koldunov, A.A. Manenkov, Polymer-filled nanoporous glass: a new material for solid-state dye lasers and nonlinear optical elements. in Proceedings of SPIE 6054, International Conference on Lasers, Applications, and Technol. 2005: Advanced Lasers and Systems, 605401 (2006); doi: 10.1117/12.660490
  32. 32.
    R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L.M. Ilharco, M. Pagliaro, The Sol-Gel route to advanced silica-based materials and recent applications. Chem. Rev. 113(8), 6592–6620 (2013)CrossRefGoogle Scholar
  33. 33.
    G. Huyang, J. Canning, I. Petermann, D. Bishop, A. McDonagh, M.J. Crossley, “Room temperature sol-gel fabrication and functionalisation for sensor applications”, Photonic Sensors. Springerlink (2012). doi: 10.1007/s13320-012-0075-2 Google Scholar
  34. 34.
    Q. Huo, D. Zhao, J. Fang, K. Weston, S.K. Buratto, G.D. Stucky, S. Schacht, F. Schuth, Room temperature growth of mesoporous silica fibers: A new high-surface-area optical waveguide. Adv. Mater. 9(121), 974–978 (1997)CrossRefGoogle Scholar
  35. 35.
    K. Matsuzaki, D. Arai, N. Taneda, T. Mukaaiyama, M. Ikemura, Continuous silica glass fiber produced by sol-gel process. J. Non-Cryst. Sol. 112(1–3), 437–441 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    R.D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S.R. Nagel, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)Google Scholar
  37. 37.
    M. Naqshbandi, J. Canning, A. Lau, M.J. Crossley, Controlled fabrication of macroscopic mesostructured silica spheres for potential diagnostics and sensing applications. in The International Quantum Electronics Conference (IQEC)/Conference on Lasers & Electro-Optics (CLEO) Pacific Rim, (IQEC/CLEO-Pacific Rim 2011), Syd. (Australia, 2011)Google Scholar
  38. 38.
    H. Hu, R.G. Larson, Evaporation of a sessile drop. J. Phys. Chem. B. 106(6), 1334–1344 (2002)CrossRefGoogle Scholar
  39. 39.
    J. Canning, H. Weil, M. Naqshbandi, K. Cook, M. Lancry, Laser tailoring surface interactions, contact angles, drop topologies and the self-assembly of optical microwires. Opt. Mat. Express 3(2), 284–294 (2013)CrossRefGoogle Scholar
  40. 40.
    J. Canning, M. Ma, B. Gibson, J. Shi, K. Cook, M.J. Crossley, Highly ordered mesoporous silica microfibres produced by evaporative self-assembly and fracturing. Opt. Mat. Express 3(2), 284–294 (2013)Google Scholar
  41. 41.
    L. Moura, J. Canning, L. Lindoy, K. Cook, M.J. Crossley, Y. Luo, G-D. Peng, L. Glavind, M. Kristensen, A fluorescence study of self-assembled silica layers on D-shaped optical fibre. in 4th Asia Pacific Optical Sensors (APOS 2013) (Wuhan, China, 2013)Google Scholar
  42. 42.
    C.M. Rollinson, S.M. Orbons, S.T. Huntington, B.C. Gibson, J. Canning, J.D. Love, A. Roberts, D.N. Jamieson, Metal-free scanning optical microscopy with a fractal fibre probe. Opt. Express 17(3), 1772–1780 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    A. Greenbaum, W. Luo, B. Khademhosseinieh, T-W. Su, A.F. Coskun, A. Ozcan, Increased space-bandwidth product in pixel super resolved lens free on-chip microscopy. Sci. Rep. 3, 1717 doi: 10.1038/srep01717 (2013)
  44. 44.
    O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A.F. Coskun, Y. Hennequin, C.P. Allier, A. Ozcan, Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nat. Photon. 7, 247–254 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    D.M. Adams, Inorganic Solids (Wiley, Great Britain, 1974)Google Scholar
  46. 46.
    P. Levitz, G. Ehret, S.K. Sinha, J.M. Drake, Porous Vycor glass: the microstructure as probed by electron microscopy, direct energy transfer, small angle scattering, and molecular adsorption. J. Chem. Phys. 95(8), 6151 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    R. Schmidt, E.W. Hansen, M. Sticker, D. Akporiaye, O.H. Ellestad, Pore size determination of MCM-41 Mesoporous materials by means of ‘H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study. J. Am. Chem. Soc. 117, 4049–4056 (1995)CrossRefGoogle Scholar
  48. 48.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)CrossRefGoogle Scholar
  49. 49.
    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309 (1938)ADSCrossRefGoogle Scholar
  50. 50.
    J.T. Randall, H.P. Rooksby, B.S. Cooper, Structure of glasses: the evidence of X-ray diffraction. J. Soc. Glass Tech. 14, 219 (1930)Google Scholar
  51. 51.
    E. Bourova, S.C. Parker, P. Richet, Atomistic simulation of cristobalite at high temperature. Phys. Rev. B 62, 12052 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    E. Tyedmers, F. Ali, N. van K. Losio, S. Murphy, S. Eid, C. Shen, M. Naqshbandi, J. Canning, M.J. Crossly, P. Rutledge, Chemical sensing with optical fibres and waveguides: diagnostics for a sustainable environment. in Talented Students Program (TSP) Report, (Staff Supervisor: J. Canning) Undergraduate Faculty Program, School of Chemistry (The University of Sydney, 2013)Google Scholar
  53. 53.
    N. Lai, K. Li, T. Jegathees, J. Canning, The detection of dopant adsorption onto silica nanoparticles through photon correlation spectroscopy. in Submitted to the Australia-New Zealand Conference on Photonics (ANZ-COP) (Perth, Australia, 2013)Google Scholar
  54. 54.
    D.-M. Liu, I.-W. Chen, Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol–gel process. Acta Materiala 47(18), 4535–4544 (1999)CrossRefGoogle Scholar
  55. 55.
    E.H. Lan, B.C. Dave, J.M. Fukuto, B. Dunn, J.I. Zink, J.S. Valentine, Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. J. Mater. Chem. 9, 45–53 (1999)CrossRefGoogle Scholar
  56. 56.
    O. Fawkes, A comparison of methods for the effective integration of dye into self-assembling silica nanowires. A Report to the School of Chemistry, The University of Sydney in partial fulfilment of the Michael Bishop Award Program for High School Students (2013)Google Scholar
  57. 57.
    D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)Google Scholar
  58. 58.
    E. Ozbay, Science Meets Magic: Photonic Metamaterials. in ed. by A. Adibi, S.-Y. Lin, A. Scherer, Photonic and Phononic Properties of Engineered Nanostructures II, Proceedings of SPIE vol. 8269, 82690L (2012)Google Scholar
  59. 59.
    K.V. Do, X. Le Roux, C. Caer, D. Morini, L. Vivien, E. Cassan, All-dielectric photonic metamaterials operating beyond the homogenization regime. Adv. Electromagnetics 1(1), 1–10 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    F. von Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, S. Linden, From Isolated Metaatoms to Photonic Metamaterials: Evolution of the Plasmonic Near-Field. Nano Lett. 13(2), 703–708 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photon. 5, 397–405 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    D.W.M. Lau, T.J. Karle, B.C. Johnson, B.C. Gibson, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, Very bright, near-infrared single photon emitters in diamond. APL Mater. 1, 032120 (2013)CrossRefGoogle Scholar
  63. 63.
    D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    M.R. Henderson, B.C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. Afshar, V.J.O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A.D. Greentree, S. Prawer, T.M. Monro, Diamond in tellurite glass: a new medium for quantum information. Adv. Mat. 23(25), 2806–2810 (2011)CrossRefGoogle Scholar
  65. 65.
    J. Canning, M. Naqshbandi, B.C. Gibson, M. Nash, H. Jeyaseelan, M.J. Crossley, “Nanoparticle self-assembly: a new approach to fabricating optical interconnects, single photon sources and more”, Integrated Photonics Research, Silicon and Nano-Photonics (IPR) (OSA’s Advanced Photonics Congress, Cheyenne Mountain Resort, Colorado Spring, Colorado United States, 2012)Google Scholar
  66. 66.
    B.C. Gibson, J. Canning, M. Naqshbandi, M. Ma, M.M. Nash, M.J. Crossley, Room temperature self-assembly of diamond and silica nanoparticles (Int. Conf. on Diamond and Carbon Materials, Riva del Garda, Italy, 2013)Google Scholar
  67. 67.
    H.P. Yuen, J.H. Shapiro, Optical communication with two-photon coherent states–Part I: Quantum-state propagation and quantum-noise. IEEE Trans. Inf. Theory 24(6), 657–668 (1978)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  68. 68.
    M. Fiorentino, P.L. Voss, J.E. Sharping, P. Kumar, All-fiber photon-pair source for quantum communications. IEEE Photn. Technol. Lett. 14(7), 983–985 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    X. Li, J. Chen, P. Voss, J. Sharping, P. Kumar, All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. Opt. Express 12(16), 3737–3744 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–649 (2008)ADSCrossRefGoogle Scholar
  71. 71.
    M. Kristensen, T. Balle, J. Selchau, K.B. Sigvardt, N. Groothoff, Generating and sensing signals for quantum cryptography using phase encoding in compact silica-on-silicon Mach-Zehnder circuits with Bragg gratings. in Proceedings of SPIE 8351, Third Asia Pacific Optical Sensors Conference, (Sydney, Australia, 83510X, 2012); doi: 10.1117/12.914310
  72. 72.
    J. Canning, M. Ma, B.C. Gibson, J. Shi, K. Cook, M.J. Crossley, The nanostructure of self-assembled silica microwires: a crystalline pure silica zeolite? in Australia New Zealand Conference on Optics and Photonics (ANZCOP) (Perth, Australia, 2013)Google Scholar
  73. 73.
    M. Ree, J. Yoon, K. Heo, Low-K nanoporous interdielectrics: Materials, Thin Film Fabrications, Structures and Properties (NOVA Science Publishers Inc., New York, 2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Interdisciplinary Photonics Laboratories (IPL), The School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations