Skip to main content

Characterization of Shear Horizontal-Piezoelectric Wafer Active Sensor (SH-PWAS)

  • Conference paper
  • First Online:
  • 1346 Accesses

Abstract

This paper discusses shear horizontal SH-coupled piezoelectric wafer active sensor (PWAS). The paper starts with a review of the state of the art in modeling SH transducers and their importance in non-destructive evaluation (NDE) and structural health monitoring (SHM). This is followed by basic sensing and actuation equations of shear-poled PWAS transducers. The free SH-PWAS electromechanical (E/M) impedance analytical models are presented, and compared with finite element models (FEM) and experiments. In this study, we extend the analytical development for constrained SH-PWAS bonded to structure on the form of beams. The model is based on normal mode expansion (NME) technique. The interaction between the SH-PWAS and the structure is studied. We developed closed-form equation of structure dynamic stiffness by coupling the mechanical response solution of the SH-PWAS to the structure elasticity solution. Finite element simulations and experiments matched well with analytical predictive model. Impedance spectroscopy is also used in NDE and SHM for composites. We present a predictive FEM for the E/M impedance of bonded SH-PWAS on cross ply GFRP as well as [0/45/45/0]s CFRP plates. The paper ends with summary, conclusion, and suggestions of future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

D j :

Electric displacement vector (C/m2)

d 35 :

Piezoelectric strain constant for shear mode (m/V) or (C/N)

E j :

Electric field (V/m)

e 35 :

Piezoelectric stress constant for shear mode (N/Vm)

g 35 :

Piezoelectric voltage constant for shear mode (m2/C) or (Vm/N) or [(V/m)/Pa]

S ij :

Strain tensor

s D55 :

Mechanical shear compliance at zero electric displacement, D = 0 (m2/N)

T kl :

Stress tensor (N/m2)

γ :

Wave number (1/m)

ε T jk :

Dielectric permittivity matrix at zero mechanical stress, T = 0 (F/m)

ε S33 :

Dielectric permittivity in 33 direction measured at zero mechanical strain, S = 0

ε T33 :

Dielectric permittivity in 33 direction measured at zero mechanical stress, T = 0

K :

Electromechanical coupling factor

μ :

Shear modulus (Pa)

ω :

Angular frequency (rad/s)

Introducing some relations:

\( {g}_{35}=\frac{d_{35}}{\varepsilon_{33}^T} \) \( \kern2.5em \frac{1}{\varepsilon_{33}^T}=\frac{1}{\varepsilon_{33}^S}-\frac{g_{35}^2}{s_{55}^D} \) \( {e}_{35}=\frac{d_{35}}{s_{55}^E} \) \( {\varepsilon}_{33}^T={\varepsilon}_{33}^S+{d}_{35}{e}_{35} \) \( \frac{\varepsilon^S}{\varepsilon^T}=\frac{s^D}{s^E}=1-{K}^2 \) \( \frac{e_{35}}{\varepsilon_{33}^S}=\frac{g_{35}}{s_{55}^D} \) \( {K}_{35}^2=\frac{d_{35}^2}{s_{55}^E{\varepsilon}_{33}^T}=\frac{e_{35}^2{s}_{55}^D}{\varepsilon_{33}^S} \)

References

  1. Fortunko CM, King RB, Tan M (1982) Nondestructive evaluation of planar defects in plates using low-frequency shear horizontal waves. J Appl Phys 53:3450–3458

    Article  Google Scholar 

  2. Rose J, Pelts S, Li J (2000) Quantitative guided wave NDE. In: 15th world conference on non-destructive testing, Rome

    Google Scholar 

  3. Glazounov A, Zhang Q (1998) Piezoelectric actuator generating torsional displacement from piezoelectric d15 shear response. J Appl Phys Lett 72:2526–2528

    Article  Google Scholar 

  4. APC International Ltd. Physical and piezoelectric properties of APC materials. http://www.americanpiezo.com

  5. Ferroperm Piezoceramics. http://www.ferroperm-piezo.com/

  6. Baillargeon BP (2003) Active vibration suppression of smart structures using piezoelectric shear actuators, Paper 284. Electronic Theses and Dissertations, The University of Maine

    Google Scholar 

  7. Sun C, Zhang X (1995) Use of thickness-shear mode in adaptive sandwich structures. J Smart Mater Struct 4:202–206

    Article  Google Scholar 

  8. Benjeddou A, Trindade MA, Ohayon R (1997) A unified beam finite element model for extension and shear piezoelectric actuation mechanisms. J Intell Mater Syst Struct 8(12):1012–1025

    Article  Google Scholar 

  9. Le Crom B, Castaings M (2010) Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J Acoust Soc Am 127(4):2220–2230

    Article  Google Scholar 

  10. Giurgiutiu V (2008) Structural health monitoring with piezoelectric wafer active sensors. Elsevier Academic Press, Amsterdam

    Google Scholar 

  11. Lee J, Kim Y, Cho S (2009) Beam-focused shear-horizontal wave generation in a plate by a circular magnetostrictive patch transducer employing a planar solenoid array. J Smart Mater Struct 18:015009

    Article  Google Scholar 

  12. Gao H, Ali S, Lopez B (2010) Inspection of austenitic weld with EMATs. In: Review of progress in quantitative nondestructive evaluation 29B, b

    Google Scholar 

  13. Zhu J, Chen W, Yang J (2013) Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators. IEEE Trans Ultrason Ferroelectr Freq Control 60(4):858–863

    Article  Google Scholar 

  14. Du J, Wang W, Chen G, Wu R, Huang D, Ma T (2013) An analysis of thickness-shear vibrations of doubly rotated quartz crystal plates with the corrected first order mindlin plate equations. IEEE Trans Ultrason Ferroelectr Freq Control 60(11):2371–2379

    Article  Google Scholar 

  15. Milyutin E, Gentil S, Muralt P (2008) Shear mode bulk acoustic wave resonator based on c-axis oriented AlN thin film. J Appl Phys 104:084508

    Article  Google Scholar 

  16. Milyutin E, Muralt P (2011) Electro-mechanical coupling in shear-mode FBAR with piezoelectric modulated thin film. IEEE Trans Ultrason Ferroelectr Freq Control 58:685–688

    Article  Google Scholar 

  17. Mueller V, Zhang Q (1998) Shear response of lead zirconate titanate piezoceramics. J Appl Phys 83:3754–3761

    Article  Google Scholar 

  18. Yanagitani T (2011) Shear mode piezoelectric thin film resonators. In: Beghi MG (ed) Acoustic waves—from microdevices to helioseismology. InTech, Tokyo, pp 501–520

    Google Scholar 

  19. Cheng C, Chen S, Zhang Z, Lin Y (2007) Analysis and experiment for the deflection of a shear-mode PZT actuator. Smart Mater Struct 16:230–236

    Article  Google Scholar 

  20. Ji W, Shen L-J (2005) Exact thickness-shear resonance frequency of electroded piezoelectric crystal plates. J Zhejiang Univ Sci 6A(9):980–985

    Article  MATH  Google Scholar 

  21. Kamal A, Lin B, Giurgiutiu V (2013) Predictive modeling of PWAS-coupled shear horizontal waves, Paper 8695-0F. SPIE NDE Conf Proc 8695:1–15

    Google Scholar 

  22. Sherrit S, Djrbashian A, Bradford S (2013) Analysis of the impedance resonance of piezoelectric multi-fiber composite stacks. In: Proceedings of SPIE, non destructive evaluation, 10–14 March, San Diego, CA

    Google Scholar 

  23. Erhart J, Pulpan P, Rusin L (2013) Bar piezoelectric ceramic transformers. IEEE Trans Ultrason Ferroelectr Freq Control 60(7):1479–1486

    Article  Google Scholar 

  24. Kamas T, Lin B, Giurgiutiu V (2013) Analytical modeling of PWAS in-plane and out-of-plane electromechanicalimpedance spectroscopy (EMIS), Paper 8692-27. SPIE NDE Conf Proc 8692:1–13

    Google Scholar 

  25. Giurgiutiu V, Zagrai A (2000) Characterization of piezoelectric wafer active sensors. J Intell Mater Syst Struct 11:959–976

    Article  Google Scholar 

  26. Pollock P, Yu L, Sutton MA, Guo S, Majumdar P, Gresil M (2012) Full-field measurements for determining orthotropic elastic parameters of woven glass-epoxy composites using off-axis tensile specimens. Exp Tech 1–11. doi: 10.1111/j.1747-1567.2012.00824.x

Download references

Acknowledgements

This work was supported by Air Force Office of Scientific Research grant #FA9550-11-1-0133, program manager Dr. David Stargel; and the Office of Naval Research grant #N00014-11-0271, program manager Dr. Ignacio Perez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Kamal, A., Giurgiutiu, V. (2015). Characterization of Shear Horizontal-Piezoelectric Wafer Active Sensor (SH-PWAS). In: Tandon, G. (eds) Composite, Hybrid, and Multifunctional Materials, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06992-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06992-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06991-3

  • Online ISBN: 978-3-319-06992-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics