Skip to main content

Raman Spectroscopy-Enhanced IIT: In Situ Analysis of Mechanically Stressed Polycrystalline Si Thin Films

  • Conference paper
  • First Online:
  • 1335 Accesses

Abstract

Exposed to mechanical stress, semiconductor materials may phase transform, resulting in changes of crystallographic structure and material properties, rather than deform by plastic flow. As a consequence, prediction of the state and distribution of strain in semiconductors has become crucial for the evaluation of performance and reliability of structures made of these materials. Indentation-induced phase transformation processes were studied by in situ Raman imaging of the deformed contact region of silicon, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). This is, to our knowledge, the first sequence of Raman images documenting the evolution of the strain fields and combined changes in the phase distributions of a material under contact load.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Uncertainties represent manufacturer specifications.

  2. 2.

    Uncertainties represent intrinsic measurement errors and mounting errors.

  3. 3.

    The areas colored in black in the frequency plots for peaks 4 and 5 indicate that no signal for the particular peak was collected at these locations.

References

  1. Mujica A, Rubio A, Munoz A, Needs RJ (2003) High-pressure phases of group-IV, III-V, and II-VI compounds. Rev Mod Phys 75:863–913

    Article  Google Scholar 

  2. Gupta MC, Ruoff AL (1980) Static compression of silicon in the [100] and in the [111] directions. J Appl Phys 51(2):1072–1075

    Article  Google Scholar 

  3. Jamieson JC (1963) Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 139(3556):762–764

    Article  Google Scholar 

  4. Hu JZ, Merkle LD, Menoni CS, Spain IL (1986) Crystal data for high-pressure phases of silicon. Phys Rev B 34(7):4679–4684

    Article  Google Scholar 

  5. Cheong WCD, Zhang LC (2003) Stress criterion for the β-tin transformation in silicon under indentation and uniaxial compression. Key Eng Mater 233–236:603–608

    Article  Google Scholar 

  6. Gerbig YB, Stranick SJ, Cook RF (2001) Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Phys Rev B 83(20):205209

    Article  Google Scholar 

  7. Gilman J (1993) Shear-induced metallization. Philos Mag 67(2):207–214

    Article  Google Scholar 

  8. Boyer LL, Kaxiras E, Feldman JL, Broughton JQ, Mehl MJ (1991) New low-energy crystal structure for silicon. Phys Rev Lett 67(6):715–718

    Article  Google Scholar 

  9. Mylvaganam K, Zhang LC, Eyben P, Mody J, Vandervorst W (2009) Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20:305705

    Article  Google Scholar 

  10. Eyben P, Clemente F, Vanstreels K, Purtois G, Clarysse T, Duriau E, Hantschel T, Sankaran K, Mody J, Vandervorst W, Mylvaganam K, Zhang L (2010) Analysis and modeling of the high vacuum scanning spreading resistance microscopy contact on silicon. J Vac Sci Technol B 28(2):401–406

    Article  Google Scholar 

  11. Kim DE, Oh SI (2008) Deformation pathway to high-pressure phases of silicon during nanoindentation. J Appl Phys 104:013502

    Article  Google Scholar 

  12. Lin Y-H, Jian S-R, Lai Y-S, Yang P-F (2008) Molecular dynamics simulations of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res Lett 3:71–75

    Article  Google Scholar 

  13. Sanz-Navarro CF, Kenny SD, Smith R (2004) Atomistic simulations of structural transformations of silicon surfaces under nanoindentation. Nanotechnology 15:692–697

    Article  Google Scholar 

  14. Smith GS, Tadmor EB, Bernstein N, Kaxiras E (2001) Multiscale simulations of silicon nanoindentation. Acta Mater 49:4089–4101

    Article  Google Scholar 

  15. Gerbig YB, Michaels CA, Forster AM, Hettenhouser JW, Byrd WE, Morris DJ, Cook RF (2012) Indentation device for in situ Raman spectroscopic and optical studies. Rev Sci Instrum 83:125106

    Article  Google Scholar 

  16. Any mention of commercial products within this paper is for information only; it does not imply recommendation or endorsement by NIST

    Google Scholar 

  17. Bushby AJ, Jennet NM (2001) Determining the area function of spherical indenters for nanoindentation. Mater Res Soc Symp Proc 649:Q7.17.1–Q7.17.6

    Google Scholar 

  18. Weppelmann ER, Field JS, Swain MV (1993) Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J Mater Res 8(4):830–840

    Article  Google Scholar 

  19. Aggarwal RL, Farrar LW, Saikin SK, Aspuru-Guzik A, Stopa M, Polla DL (2011) Measurement of the absolute Raman cross section of the optical phonon in silicon. Solid State Commun 151:553–556

    Article  Google Scholar 

  20. Windl W, Pavone P, Karch K, Schütt O, Strauch D, Giannozzi P, Baroni S (1993) Second-order Raman spectra of diamond from ab initio phonon calculations. Phys Rev B 48(5):3164–3170

    Article  Google Scholar 

  21. Watson GH Jr, Daniels WB, Wang CS (1981) Measurement of Raman intensities and pressure dependence of phonon frequencies in sapphire. J Appl Phys 52:956–958

    Article  Google Scholar 

  22. Han C-F, Lin J-F (2010) The model developed for stress-induced structural phase transformations in micro-crystalline silicon films. Nano Micro Lett 2(2):68–73

    Google Scholar 

  23. Gerbig YB, Michaels CA, Forster AM, Cook RF (2012) In situ observation of the indentation-induced phase transformation of silicon thin films. Phys Rev B 85(10):104102

    Article  Google Scholar 

  24. Olijnyk H (1992) Raman scattering in metallic Si and Ge up to 50 GPa. Phys Rev Lett 68(14):2232–2234

    Article  Google Scholar 

  25. Chang KJ, Cohen ML (1985) Solid-solid phase transitions and soft phonon models in highly condensed Si. Phys Rev B 31(12):7819–7826

    Article  Google Scholar 

  26. Lewis SP, Cohen ML (1993) Theoretical study of Raman modes in high-pressure phases of Si, Ge, and Sn. Phys Rev B 48(6):3646–3653

    Article  Google Scholar 

  27. Gaál-Nagy K, Schmitt M, Pavone P, Strauch D (2001) Ab initio study of the high-pressure phase transition from the cubic-diamond to the β-tin structure of Si. Comput Mater Sci 22:49–51

    Article  Google Scholar 

  28. Kaxiras E, Boyer LL (1994) Energetics of large lattice strains: application to silicon. Phys Rev B 50(3):1535–1540

    Article  Google Scholar 

  29. Hale LM, Zhou X, Zimmerman JA, Moody NR, Ballarini R, Gerberich WW (2011) Phase transformations, dislocations and hardening behavior in uniaxially compressed silicon nanospheres. Comput Mater Sci 50:1651–1660

    Article  Google Scholar 

  30. De Wolf I (1993) Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Technol 11(2):139–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne B. Gerbig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Gerbig, Y.B., Michaels, C.A., Cook, R.F. (2015). Raman Spectroscopy-Enhanced IIT: In Situ Analysis of Mechanically Stressed Polycrystalline Si Thin Films. In: Sottos, N., Rowlands, R., Dannemann, K. (eds) Experimental and Applied Mechanics, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-06989-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06989-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06988-3

  • Online ISBN: 978-3-319-06989-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics