In situ Observation of NiTi Transformation Behaviour: A Micro–Macro Approach

  • Kasun S. Wickramasinghe
  • Rachel A. TomlinsonEmail author
  • Jem A. Rongong
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


A novel experimental investigation is presented of thermally and stress induced transformation behaviour of a Polycrystalline NiTi Shape Memory Alloy (SMA) plate for flexural-type applications: In situ techniques are employed to allow simultaneous macroscopic and microstructural observation of the SMA in a 4-point flexural test. Forming part of a wider research towards realising a NiTi SMA Variable Stator Vane assembly for the gas turbine engine, the study explores variables critical to flexural-type morphing NiTi structures: (1) temperature; (2) strain; and (3) cyclic loading. It builds a relationship between the macro and micro response of the SMA under these key variables and lends critical implications for the future understanding and modelling of shape memory alloy behaviour for all morphing applications. This paper presents the methodological aspects of this study.


Shape memory NiTi In situ Phase transformations Micro–macro approach Cyclic loading 


  1. 1.
    Horn W, Ardey S, Grauer F, Schmidt K, Staudacher S (2008) Opportunities and challenges for more intelligent gas turbine engines. Deutscher Luft- und RaumfahrtkongressGoogle Scholar
  2. 2.
    Wu M, Schetky L (2000) Industrial application for shape memory alloys. In: Proceedings of the international conference on shape memory and superelastic technologies, Pacific Grove, CA, pp 171–182Google Scholar
  3. 3.
    Lagoudas D (2008) Shape memory alloys: modelling and engineering applications. Springer, TexasGoogle Scholar
  4. 4.
    Miyazaki S, Kimura S, Otsuka K, Suzuki Y (1983) Shape memory effect and pseudoelasticity in a Ti–Ni single crystal. Scr Metall 18:1057–1062CrossRefGoogle Scholar
  5. 5.
    Miyazaki S, Imai T, Igo Y, Otsuka K (1986) Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall Trans A 17(1):115–120CrossRefGoogle Scholar
  6. 6.
    Abeyaratne R, Chu C, James R (1994). Kinetics and hysteresis in martensitic single crystals. In: Proceeding of symposium on the mechanics of phase transformations and shape memory alloysGoogle Scholar
  7. 7.
    Vivet A, Lexcellent C (1998) Observations and analysis of martensitic phase transformation on CuZnAl single crystals. J Phys IV France 9:411–418Google Scholar
  8. 8.
    Fang D, Lu W, Hwang K (1999) Pseudoelastic behavior of a CuAlNi single crystal under uniaxial loading. Metall Mater Trans A 30(8):1933–1943CrossRefGoogle Scholar
  9. 9.
    Jost N (1999) Thermal fatigue of Fe–Ni–Co–Ti shape-memory-alloys. Mater Sci Eng A 275:649–653CrossRefGoogle Scholar
  10. 10.
    Liu Y, Xie Z, Van Humbeeck J, Delaey L (1999) Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Mater 47(2):645–660CrossRefGoogle Scholar
  11. 11.
    Zheng Y, Huang B, Zhang J, Zhao L (1999) High resolution electron microscopy studies on the interface structure of deformed stress induced martensite variants in a Ti–Ni–Nb shape memory alloy. Mater Sci Eng A 275:271–274CrossRefGoogle Scholar
  12. 12.
    Brinson L, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52(7):1549–1571CrossRefzbMATHGoogle Scholar
  13. 13.
    Berg B (1995) Bending of superelastic wires, Part I: experimental aspects. J Appl Mech 62:459CrossRefGoogle Scholar
  14. 14.
    Bundara B, Tokuda M, Kuselj B, Ule B, Tuma J (2000) Superelastic tension and bending characteristics of shape memory alloys. Metals Mater Int 6:293–299CrossRefGoogle Scholar
  15. 15.
    Rejzner J, Lexcellent C, Raniecki B (2002) Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modelling. Int J Mech Sci 44(4):665–686CrossRefzbMATHGoogle Scholar
  16. 16.
    Reedlunn B, Churchill C, Nelson E, Shaw J, Daly H (2014) Tension, compression, and bending of superelastic shape memory alloy tubes. J Mech Phys Solids 63:506–537CrossRefGoogle Scholar
  17. 17.
    Brazier L (1927) On the flexure of thin cylindrical shells and other “thin” sections. Proc R Soc Lond A 116(773):104CrossRefzbMATHGoogle Scholar
  18. 18.
    Saikrishna C, Ramaiah K, Prabhu S, Bhaumik S (2009) On stability of NiTi wire during thermo-mechanical cycling. Bull Mater Sci 32(3):343–352CrossRefGoogle Scholar
  19. 19.
    Bechle J, Kyriakides S (2014) Localization in NiTi tubes under bending. Int J Solid Struct 51:967–980CrossRefGoogle Scholar
  20. 20.
    Maynadier A, Poncelet M, Lavernhe-Taillard K, Roux S (2013). One-shot thermal and kinematic field measurements: infra-red image correlation. In: Conference proceedings of the society for experimental mechanics series 2013, pp 243–250Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2015

Authors and Affiliations

  • Kasun S. Wickramasinghe
    • 1
  • Rachel A. Tomlinson
    • 1
    Email author
  • Jem A. Rongong
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations