Stabilizing Heteroscedastic Noise with the Generalized Anscombe Transform: Application to Accurate Prediction of the Resolution in Displacement and Strain Maps Obtained with the Grid Method

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

The objective of this paper is to show that it is possible to predict the noise level in displacement and strain maps obtained with the grid method, but that actual noise of camera sensors being heteroscedastic, it is necessary to stabilize this noise in grid images prior to employing the predicting formulas. The procedure used for this purpose relies on the Generalized Anscombe Transform. This transform is first described. It is then shown that experimental and theoretical resolutions in strain maps obtained with the grid method are in good agreement when this transform is employed.

Keywords

Displacement Generalized Anscombe transform Grid method Noise Strain measurement Metrological performance 

References

  1. 1.
    Healey GE, Kondepudy R (1994) Radiometric CCD camera calibration and noise estimation. IEEE Trans Pattern Anal Mach Intell 16(3):267–276CrossRefGoogle Scholar
  2. 2.
    Murthagh F, Starck JL, Bijaoui A (1995) Image restoration with noise suppression using a multiresolution support. Astron Astrophys 112:179–189Google Scholar
  3. 3.
    Sur F, Grédiac M (2014) Sensor noise modeling by stacking pseudo-periodic grid images affected by vibrations. IEEE Signal Process Lett 21(4):432–436CrossRefGoogle Scholar
  4. 4.
    Piro JL, Grédiac M (2004) Producing and transferring low-spatial-frequency grids for measuring displacement fields with moiré and grid methods. Exp Tech 28(4):23–26CrossRefGoogle Scholar
  5. 5.
    Surrel Y (2000) Fringe analysis. In: Rastogi PK (ed) Photomechanics, vol 77, Topics in applied physics. Springer, Berlin, pp 55–102CrossRefGoogle Scholar
  6. 6.
    Badulescu C, Grédiac M, Mathias J-D (2009) Investigation of the grid method for accurate in-plane strain measurement. Meas Sci Technol 20(9):095102CrossRefGoogle Scholar
  7. 7.
    Surrel Y (1997) Additive noise effect in digital phase detection. Appl Opt 36(1):271–276CrossRefGoogle Scholar
  8. 8.
    Sur F, Grédiac M (2014) Towards deconvolution to enhance the grid method for in-plane strain measurement. Inverse Probl Imaging 8(1):259–291MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grédiac M, Sur F, Badulescu C, Mathias J-D (2013) Using deconvolution to improve the metrological performance of the grid method. Opt Lasers Eng 51:716–734CrossRefGoogle Scholar
  10. 10.
    Chrysochoos A, Surrel Y (2012) Basics of metrology and introduction to techniques. In: Grédiac M, Hild F (eds) Full-field measurements and identification in solid mechanics. Wiley, Weinheim, pp 1–29CrossRefGoogle Scholar
  11. 11.
    Grédiac M, Sur F (2014) Effect of sensor noise on the resolution and spatial resolution of the displacement and strain maps obtained with the grid method. Strain 50(1):1–27CrossRefGoogle Scholar
  12. 12.
    Mallat S (2008) A wavelet tour of signal processing: the sparse way, vol 3. Academic, San DiegoGoogle Scholar
  13. 13.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519CrossRefGoogle Scholar
  14. 14.
    Haddadi H, Belhabib S (2008) Use of a rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Opt Lasers Eng 46:185–196CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2015

Authors and Affiliations

  1. 1.UMR CNRS 6602Clermont Université, Université Blaise Pascal, Institut PascalClermont-FerrandFrance
  2. 2.Laboratoire Lorrain de Recherche en Informatique et ses ApplicationsUMR CNRS 7503 Université de Lorraine, CNRS, INRIA Projet MagritVandoeuvre-lès-Nancy, CedexFrance

Personalised recommendations