Modeling Epidemic Risk Perception in Networks with Community Structure

Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 134)


We study the influence of global, local and community-level risk perception on the extinction probability of a disease in several models of social networks. In particular, we study the infection progression as a susceptible-infected-susceptible (SIS) model on several modular networks, formed by a certain number of random and scale-free communities. We find that in the scale-free networks the progression is faster than in random ones with the same average connectivity degree. For what concerns the role of perception, we find that the knowledge of the infection level in one’s own neighborhood is the most effective property in stopping the spreading of a disease, but at the same time the more expensive one in terms of the quantity of required information, thus the cost/effectiveness optimum is a tradeoff between several parameters.


Risk perception SIS model Complex networks 



We acknowledge funding from the 7th Framework Programme of the European Union under grant agreement n\(^\circ \) 257756 and n\(^\circ \) 257906.


  1. 1.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans Dynamics and Control. Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Bagnoli, F., Liò, P., Sguanci, L.: Risk perception in epidemic modeling. Phys. Rev. E 76, 061904 (2007)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Barrat, A., Barthlemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, New York (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. Fervier 424(4–5), 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Boguñá, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90, 028701 (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, J., Zhang, H., Guan, Z.-H., Li, T.: Epidemic spreading on networks with overlapping community structure. Phys. A: Stat. Mech. Appl. 391(4), 1848–1854 (2012)CrossRefGoogle Scholar
  8. 8.
    Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002)CrossRefGoogle Scholar
  9. 9.
    Dezső, Z., Barabási, A.-L.: Halting viruses in scale-free networks. Phys. Rev. E 65(5), 055103+ (2002)CrossRefGoogle Scholar
  10. 10.
    Van Dongen, S.: Graph clustering via a discrete uncoupling process. SIAM. J. Matrix Anal. Appl. 30, 121–141 (2009)CrossRefGoogle Scholar
  11. 11.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000)CrossRefGoogle Scholar
  12. 12.
    Dorso, C., Medus, A.D.: Community detection in networks. Int. J. Bifurcat. Chaos 20(2), 361–367 (2010)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Fortunato, S., Castellano, C.: Community Structure in Graphs, December 2007Google Scholar
  15. 15.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci., USA 99, 7821–7826 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Stephan, K., Pietro, L.: Risk perception and disease spread on social networks. Procedia Comput. Sci. 1(1), 2339–2348 (2010)Google Scholar
  17. 17.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure of complex networks. New J. Phys. 11, 033015 (2009)CrossRefGoogle Scholar
  18. 18.
    Liljeros, F., Edling, C.R., Amaral, L.A., Stanley, E.H., Åberg, Y.: The web of human sexual contacts. Nature 411(6840), 907–908 (2001)CrossRefGoogle Scholar
  19. 19.
    Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000)CrossRefGoogle Scholar
  20. 20.
    Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)CrossRefGoogle Scholar
  21. 21.
    Newman, M.E.J.: Detecting community structure in networks. Europ. Phys. J. B. 38, 321–330 (2004)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)CrossRefGoogle Scholar
  23. 23.
    Palla, G., Derény, I., Vickset, T.: Nature 435, 814 (2005)Google Scholar
  24. 24.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63, 066117 (2001)CrossRefGoogle Scholar
  25. 25.
    Salathé, M., Jones, J.H.: Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6(4), e1000736 (2010)CrossRefGoogle Scholar
  26. 26.
    Saumell-Mendiola, A., Serrano, M.A., Bogu ná, M.: Epidemic spreading on interconnected networks. arXiv:1202.4087 (2012)

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  1. 1.Department of EnergyUniversity of FlorenceFlorenceItaly
  2. 2.Center for the Study of Complex SystemsUniversity of FlorenceFlorenceItaly
  3. 3.National Institute for Nuclear PhysicsFlorence SectionFlorenceItaly
  4. 4.Communication Systems GroupETH ZurichZurichSwitzerland
  5. 5.National Research CouncilInstitute for Informatics and TelematicsPisaItaly
  6. 6.Department of PsychologyUniversity of FlorenceFlorenceItaly
  7. 7.Department of Computer Science and SystemsUniversity of FlorenceFlorenceItaly
  8. 8.Organic Computing GroupUniversity of AugsburgAugsburgGermany

Personalised recommendations