Evolving Networks Processing Signals with a Mixed Paradigm, Inspired by Gene Regulatory Networks and Spiking Neurons

  • Borys Wróbel
  • Ahmed Abdelmotaleb
  • Michał Joachimczak
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 134)

Abstract

In this paper we extend our artificial life platform, called GReaNs (for Genetic Regulatory evolving artificial Networks) to allow evolution of spiking neural networks performing simple computational tasks. GReaNs has been previously used to model evolution of gene regulatory networks for processing signals, and also for controlling the behaviour of unicellular animats and the development of multicellular structures in two and three dimensions. The connectivity of the regulatory network in GReaNs is encoded in a linear genome. No explicit restrictions are set for the size of the genome or the size of the network. In our previous work, the way the nodes in the regulatory network worked was inspired by biological transcriptional units. In the extension presented here we modify the equations governing the behaviour of the units so that they describe spiking neurons: either leaky integrate and fire neurons with a fixed threshold or adaptive-exponential integrate and fire neurons. As a proof-of-principle, we report the evolution of spiking networks that match desired spiking patterns.

Keywords

Evolutionary algorithms Gene regulatory networks Spiking neural networks Signal processing Leaky integrate and fire neurons Adaptive-exponential neurons 

References

  1. 1.
    Joachimczak, M., Kowaliw, T., Doursat, R., Wróbel, B.: Brainless bodies: Controlling the development and behavior of multicellular animats by gene regulation and diffusive signals. In: Artificial Life XIII: Proceedings of the 13th International Conference on the Simulation and Synthesis of Living Systems, MIT Press (2012) 349–356Google Scholar
  2. 2.
    Joachimczak, M., Wróbel, B.: Co-evolution of morphology and control of soft-bodied multicellular animats. In: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation. GECCO ’12, pp. 561–568. ACM (2012)Google Scholar
  3. 3.
    Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating multicellular development in 3D space with artificial physics. In: Artificial Life XI: Proceedings of the 11th International Conference on the Simulation and Synthesis of Living Systems, pp. 297–304. MIT Press (2008)Google Scholar
  4. 4.
    Joachimczak, M., Wróbel, B.: Evolution of the morphology and patterning of artificial embryos: scaling the tricolour problem to the third dimension. In: Kampis, G., Karsai, I., Szathmáry, E. (eds.) ECAL 2009, Part I. LNCS, vol. 5777, pp. 35–43. Springer, Heidelberg (2011) Google Scholar
  5. 5.
    Joachimczak, M., Wróbel, B.: Open ended evolution of 3d multicellular development controlled by gene regulatory networks. In: Artificial Life XIII: Proceedings of the 13th International Conference on the Simulation and Synthesis of Living Systems, pp. 67–74. MIT Press (2012)Google Scholar
  6. 6.
    Joachimczak, M., Wróbel, B.: Evolving gene regulatory networks for real time control of foraging behaviours. In: Artificial Life XII: Proceedings of the 12th International Conference on the Simulation and Synthesis of Living Systems, pp. 348–355. MIT Press (2010)Google Scholar
  7. 7.
    Wróbel, B., Joachimczak, M., Montebelli, A., Lowe, R.: The search for beauty: evolution of minimal cognition in an animat controlled by a gene regulatory network and powered by a metabolic system. In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS, vol. 7426, pp. 198–208. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Joachimczak, M., Wróbel, B.: Processing signals with evolving artificial gene regulatory networks. In: Artificial Life XII: Proceedings of the 12th International Conference on the Simulation and Synthesis of Living Systems, pp. 203–210. MIT Press (2010)Google Scholar
  9. 9.
    Flood, I., Kartam, N.: Artificial Neural Networks for Civil Engineers: Advanced Features and Applications. American Society of Civil Engineers, New York (1998)Google Scholar
  10. 10.
    Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3(4), 469–509 (1995)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Izhikevich, E.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT press, Cambridge (2007)Google Scholar
  12. 12.
    Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in python. Front. Neuroinform. 2, 5 (2008)CrossRefGoogle Scholar
  13. 13.
    Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)CrossRefGoogle Scholar
  14. 14.
    Touboul, J.: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J. Appl. Math. 68(4), 1045–1079 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving spiking neural networks in the GReaNs (gene regulatory evolving artificial networks) platform. EvoNet2012: Evolving Networks, from Systems/Synthetic Biology to Computational Neuroscience Workshop at Artificial Life XIII, pp. 19–22 (2008)Google Scholar
  16. 16.
    Davison, A.P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinform. 2, 11 (2008)CrossRefGoogle Scholar
  17. 17.
    Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and networks. Trans. Evol. Comput. 11(5), 596–607 (2007)CrossRefGoogle Scholar
  18. 18.
    Veredas, F.J., Vico, F.J., Alonso, J.M.: Evolving networks of integrate-and-fire neurons. Neurocomputing 69(13–15), 1561–1569 (2006)CrossRefGoogle Scholar
  19. 19.
    Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)CrossRefGoogle Scholar
  20. 20.
    Tufte, G.: Phenotypic, developmental and computational resources: scaling in artificial development. In: GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 859–866. ACM (2008)Google Scholar
  21. 21.
    Jakobi, N.: Harnessing morphogenesis. In: Proceedings of Information Processing in Cells and Tissues, pp. 29–41 (1995)Google Scholar
  22. 22.
    Indiveri, G., Linares-Barranco, B., Julia, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.C.C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., Boahen, K.: Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)Google Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Borys Wróbel
    • 1
    • 2
    • 3
  • Ahmed Abdelmotaleb
    • 2
  • Michał Joachimczak
    • 3
  1. 1.Institute of NeuroinformaticsUniversity of Zurich/ETHZZurichSwitzerland
  2. 2.Evolutionary Systems LaboratoryAdam Mickiewicz University in PoznanPoznanPoland
  3. 3.Systems Modelling LaboratoryIOPAS in SopotSopotPoland

Personalised recommendations