The problem of hand shape classification is challenging since a hand is characterized by a large number of degrees of freedom. Numerous shape descriptors have been proposed and applied over the years to estimate and classify hand poses in reasonable time. In this paper we discuss our parallel, real-time framework for fast hand shape classification. We show how the number of gallery images influences the classification accuracy and execution time of the algorithm. We present the speedup and efficiency analyses that prove the efficacy of the parallel implementation. Different methods can be used at each step of the proposed parallel framework. Here, we combine the shape contexts with the appearance-based techniques to enhance the robustness of the algorithm and to increase the classification score. An extensive experimental study proves the superiority of the proposed approach over existing state-of-the-art methods.


hand shape classification gesture recognition parallel algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE TPAMI 24(4), 509–522 (2002)CrossRefGoogle Scholar
  2. 2.
    Celebi, M.E., Aslandogan, Y.: A comparative study of three moment-based shape descriptors. In: Proc. IEEE ITCC, vol. 1, pp. 788–793 (2005)Google Scholar
  3. 3.
    Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press (2007)Google Scholar
  4. 4.
    Czupryna, M., Kawulok, M.: Real-time vision pointer interface. In: 2012 Proceedings of ELMAR, pp. 49–52 (2012)Google Scholar
  5. 5.
    Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. Comp. Vis. and Im. Underst. 108(1-2), 52–73 (2007)CrossRefGoogle Scholar
  6. 6.
    Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. Tech. rep., MERL (1994)Google Scholar
  7. 7.
    Grzejszczak, T., Nalepa, J., Kawulok, M.: Real-time wrist localization in hand silhouettes. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 439–449. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on Inf. Theory 8(2), 179–187 (1962)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE TPAMI 15(9), 850–863 (1993)CrossRefGoogle Scholar
  10. 10.
    Kawulok, M.: Fast propagation-based skin regions segmentation in color images. In: Proc. IEEE FG, pp. 1–7 (2013)Google Scholar
  11. 11.
    Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Pattern Recognition Letters 41, 3–13 (2014), CrossRefGoogle Scholar
  12. 12.
    Kawulok, M., Kawulok, J., Nalepa, J., Papiez, M.: Skin detection using spatial analysis with adaptive seed. In: Proc. IEEE ICIP, pp. 3720–3724 (2013)Google Scholar
  13. 13.
    Kawulok, M., Nalepa, J., Kawulok, J.: Skin detection and segmentation in color images. In: Celebi, M.E., Smolka, B. (eds.) Advances in Low-Level Color Image Processing, Lecture Notes in Computational Vision and Biomechanics, vol. 11, pp. 329–366. Springer Netherlands (2014),
  14. 14.
    Lin, C.C., Chang, C.T.: A fast shape context matching using indexing. In: Proc. IEEE ICGEC, pp. 17–20 (2011)Google Scholar
  15. 15.
    MacLean, J., Pantofaru, C., Wood, L., Herpers, R., Derpanis, K., Topalovic, D., Tsotsos, J.: Fast hand gesture recognition for real-time teleconferencing applications. In: Proc. IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 133–140 (2001)Google Scholar
  16. 16.
    Nalepa, J., Czech, Z.J.: A parallel heuristic algorithm to solve the vehicle routing problem with time windows. Studia Informatica 33(1), 91–106 (2012)Google Scholar
  17. 17.
    Nalepa, J., Grzejszczak, T., Kawulok, M.: Wrist localization in color images for hand gesture recognition. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 79–86. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Nalepa, J., Kawulok, M.: Parallel hand shape classification. In: Proc. IEEE ISM, pp. 401–402 (2013)Google Scholar
  19. 19.
    Papiez, M., Kawulok, M.: Adaptive skin detection in colour images using error signal space. Studia Informatica 34(2A), 365–377 (2013)Google Scholar
  20. 20.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Im. and Vis. Comp. J. 16(5), 295–306 (1998)Google Scholar
  21. 21.
    Shen, Y., Ong, S.K., Nee, A.Y.C.: Vision-based hand interaction in augmented reality environment. Int. J. Hum. Comput. Interaction 27(6), 523–544 (2011)CrossRefGoogle Scholar
  22. 22.
    Thippur, A., Ek, C.H., Kjellstrom, H.: Inferring hand pose: A comparative study of visual shape features. In: Proc. IEEE FG, pp. 1–8 (2013)Google Scholar
  23. 23.
    Ul Haq, E., Pirzada, S.J.H., Baig, M.W., Shin, H.: New hand gesture recognition method for mouse operations. In: 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4 (2011)Google Scholar
  24. 24.
    Šarić, M.: Libhand: A library for hand articulation, version 0.9 (2011),
  25. 25.
    Wachs, J., Stern, H., Edan, Y., Gillam, M., Feied, C., Smith, M., Handler, J.: A real-time hand gesture interface for medical visualization applications. In: Tiwari, A., Roy, R., Knowles, J., Avineri, E., Dahal, K. (eds.) App. of Soft Comp. AISC, vol. 36, pp. 153–162. Springer, Heidelberg (2006), CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland
  2. 2.Future ProcessingGliwicePoland

Personalised recommendations