Skip to main content

Plant Disease Prevention and Management in Sustainable Agricultural Systems

  • Chapter
  • First Online:
Sustainable Horticultural Systems

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 2))

  • 2683 Accesses

Abstract

This chapter emphasizes the importance of devoting more efforts to create sustainable farming system for plant disease prevention and management in the tropics. We highlight sustainable pest management approaches that: (1) enhance high biological diversity through polyculture instead of the conventional preference of monoculture cropping systems; (2) increase ecosystem community stability by promoting natural enemies of multiple pests and pathogens; (3) stimulate inherent plant defenses; (4) improve plant health by maintaining nutrient cycling and energy flow; and (5) target vulnerable stages of a pest or pathogen through the understanding of their ecology. The use of therapeutic approaches, whether biological, chemical, or physical, is in violation of the five fundamental approaches for sustainable pest management listed above. The foundation for disease management in sustainable agricultural systems should be based on an understanding of the total agroecosystem composite of the biology of pathogens, host plant defenses, plant mixtures, soil, natural enemies, and timing of cultural practices to avoid creating a conducive environment for disease development. Successful examples of sustainable pest management strategies using these approaches are listed for key plant pathogens. While the literature review on sustainable pest management approaches for different groups of plant pathogens has been reviewed separately, future work in developing sustainable pest management should design approaches that can target multiple pests and plant pathogens concurrently through environmentally friendly and renewable strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arancon NQ, Edwards CA (2004) Vermicomposts can suppress plant pest and disease attacks. BioCycle 45:51–53

    Google Scholar 

  • Arancon NQ, Edwards CA, Atiyeh R, Metzger JD (2004) Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour Technol 93:139–144

    PubMed  CAS  Google Scholar 

  • Arancon NQ, Edwards CA, Bierman P, Metzger JD, Lucht C (2005a) Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yields of peppers in the field. Pedobiologia 49:297–306

    CAS  Google Scholar 

  • Arancon NQ, Galvis PA, Edwards CA (2005b) Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol 96:1137–1142

    PubMed  CAS  Google Scholar 

  • Ball-Coelho B, Bruin AJ, Roy RC, Riga E (2003) Forage pearl millet and marigold as rotation crops for biological control of root-lesion nematodes in potato. Agron J 95:282–292

    Google Scholar 

  • Barron GL (1992) Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Marcel-Decker, New York

    Google Scholar 

  • Birchfield W, Bristline F (1956) Cover crop in relation to the burrowing nematode, Radopholus similis. Plant Dis Report 40:398–399

    Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Ann Rev Phytopathol 34:201–225

    CAS  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate-containing plants. Adv Agron 61:167–231

    CAS  Google Scholar 

  • Bulluck LR, Ristaino JB (2002) Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes. Phytopathology 92:181–189

    PubMed  CAS  Google Scholar 

  • Cardwell D, Ingham R (1996) Management practices to suppress Columbia Root-Knot nematode. Pac Northwest Sustain Agr 6

    Google Scholar 

  • Charchar JM, Huang CS (1981) Host range of Pratylencus brachyurus: 3 different species. Fitopathol Bras 6:469–474

    Google Scholar 

  • Charles JSK (1995) Effect of intercropping antagonistic crops against nematodes in banana. Ann Plant Prot Sci 3:185–187

    Google Scholar 

  • Charles P, Suh C, Orr DB, Van Duyn JW (2000) Effects of insecticides on Trichogramma exiguum (Trichogrammatidae: Hymenoptera) preimaginal development and adult survival. J Econ Entomol 93:577–583

    Google Scholar 

  • Ching S, Wang K-H (2012) Developing bioassay method for detecting nematode-trapping fungi in field soils with different cultural practices. CTAHR Student Research Symposium, Honolulu, Hawaii (Abstract #60)

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. Am Phytopathol Soc, St. Paul, MN. p 539

    Google Scholar 

  • Cook RJ, Gabriel CJ, Kelman A, Tolin S, Vidaver AK (1995) Research on plant disease and pest management is essential to sustainable agriculture. Bioscience 45:354–357

    Google Scholar 

  • Cowgill SE, Wratten SD, Sotherton NW (1993) The selective use of floral resources by the hoverfly Episyrphus balteatus (Diptera: Syrphidae) on farmland. Ann Appl Biol 122:223–231

    Google Scholar 

  • Daamen RA, Wijnands FG, van der Vliet G (1989) Epidemics of diseases and pests of winter wheat at different levels of agrochemical input. A study on the possibilities of designing an integrated cropping system. J Phytopathol 125:305–319

    Google Scholar 

  • Deacon JW (1976) Studies on Pythium oligandrum, an aggressive parasite of other fungi. Trans Br Myco Soc 66:383–391

    Google Scholar 

  • Deacon JW, Henry CM (1978) Mycoparasitism by Pythium oligandrum and Pythium acanthicum. Soil Biol Biochem 10:409–415

    Google Scholar 

  • Deacon JW, Laing SAK, Berry LA (1991) Pythium mycoparasiticum sp. nov., an aggressive mycoparasite from British soils. Mycotaxon 42:1–8

    Google Scholar 

  • Dixon AFG (1969) Quality and availability of food for a sycamore aphid population. In: Watson TF (ed) Animal populations in relation to the food resources. Blackwell, Oxford

    Google Scholar 

  • Dowling DN, Sexton R, Fenton A, Delany I, Fedi S, McHugh B, Callanan M, Moënne-Loccoz Y, Gara F (1996) Iron regulation in plant-associated pseudomonas flourescens M114: implications for biological control. In: Nakazawa K, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. ASM, Washington, DC

    Google Scholar 

  • Downer AJ, Menge JA, Pond E (2001) Association of cellulytic enzyme activities in eucalyptus mulches with biological control of phytophthora cinnamomi. Phytopathology 91:847–855

    PubMed  CAS  Google Scholar 

  • DuPont SP, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Ann Rev Phytopathol 42:185–209

    CAS  Google Scholar 

  • Edwards C, Arancon NQ, Greytak S (2006) Effects of vermicompost teas on plant growth and disease. BioCycle 47:28–31

    Google Scholar 

  • Edwards C, Arancon NQ, Emerson E, Pulliman R (2007) Suppression of plant-parasitic nematodes and arthropod pests with vermicompost tea. Biocycle 48:38–39

    Google Scholar 

  • El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH (2002) In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J Microbiol Biotechnol 18:551–558

    CAS  Google Scholar 

  • El Titi A, Richter J (1987) Integrierter Pflanzenschutz im Ackerbau: Das Lautenbach Projekt. III. Schadlinge und Krankheiten 1979–1983. Z. Pflkrankh Pflschutz 94:1–13

    Google Scholar 

  • Ferris H, Griffiths BS, Porazinska DL, Powers TO, Wang KH, Tenuta M (2012) Reflections on plant and soil nematode ecology: past, present and future. J Nematol 44:115–126

    PubMed  PubMed Central  Google Scholar 

  • Gardner J, Caswell-Chen EP (1994) Raphanus sativus, Sinapis alba, Fagopyrum esculentum as hosts to Meloidogyne incognita, Meloidogyne javanica, and Plasmodiophora brassicae. Suppl J Nematol 26:756–760

    CAS  Google Scholar 

  • Gommers FJ, Bakker J (1988) Physiological diseases induced by plant responses or products. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes, vol 1. CRC, Boca Raton, pp 3–22

    Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Grutzmacher AD, Zimmermann O, Yousef A, Hassan SA (2004) The side-effects of pesticides used in integrated production of peaches in Brazil on the egg parasitoid Trichogramma caecoecia Marchal (Hym. Trichogrammatidae). J Appl Entomol 128:377–383

    CAS  Google Scholar 

  • Hamilton WD, Moran N (1980) Low nutritive quality as a defese against herbivores. MicrobiolJ Theor Biol 86:247–254

    Google Scholar 

  • Hogg BN, Bugg RL, Daane KM (2011) Attractiveness of common insectary and harvestable floral resources to beneficial insects. Biol Control 56:76–84

    Google Scholar 

  • Hoitink HA, Fahy P (1986) Basis for the control of soilborne plant pathogens with composts. Ann Rev Phytopathol 24:93–114

    Google Scholar 

  • Hoitink HAJ, Krause MS, Han DY (2001) Spectrum and mechanisms of plant disease control with composts. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton, FL. pp. 263

    Google Scholar 

  • Hooks CRR, Johnson M (2001) Broccoli growth parameters and level of head infestations in simple and mixed plantings: Impact of increased flora diversification. Assoc Appl Biol 138:269–280

    Google Scholar 

  • Hooks CRR, Johnson M (2004) Using undersown clovers as living mulches: effects on yields, lepidopterous pest infestations, and spider densities in a Hawai’ian broccoli agrosystem. Int J Pest Manage 50:115–120

    Google Scholar 

  • Hooks CRR, Valenzuela H, Defrank J (1998) Incidence of pests and arthropod natural enemies in zucchini grown with living mulches. Agric Ecosyst Environ 69:217–231

    Google Scholar 

  • Hooks CRR, Wang K-H, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320

    Google Scholar 

  • Hornby D (1990) Biological control of soil-borne plant pathogens. CAB International, Wallingford

    Google Scholar 

  • House HI (1965) Insect nutrition. In: Rockstein ME (ed) Physiology of the insecta, vol 2. Academic Press, London, pp 769–858

    Google Scholar 

  • Huerta A, Medina P, Smagghe G, Castanera P, Vinuela E (2003) Tropical toxicity of two acetonic fractions of Trichilia havanensis Jacq. and four insecticides to larvae and adults of Chhrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Commun Agric Appl Biol Sci 68:277–286

    PubMed  CAS  Google Scholar 

  • Ikediugwu FEO (1976) The interface in hypal interference by peniophora against Heterobasidion annosum. Trans Br Myco Soc 66:291–296

    Google Scholar 

  • Ikediugwu FEO, Webster J (1970) Antagonism between Coprinus heptemerus and other coprophilous fungi. Trans Br Myco Soc 54:181–204

    Google Scholar 

  • Jagdale GP, Reynolds B, Ball-Coelho B, Potter J (1999) Nematicidal activity of marigold plant parts against root-lesion nematodes (Pratylenchus penetrans). J Nematol 31:546–547

    Google Scholar 

  • James DG (2005) Further evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:493–507

    Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CAB International, Cambridge

    Google Scholar 

  • Johnson M (2004) The impact of organic insecticides on beneficials. California conference features pest control and organicproduction. http://www.rodaleinstitute.org/200483/lotter

  • Kellock LM, Dix NJ (1984) Antogonism by hypomyces aurantius. II. Ultrastructural studies of hyphal disruption. Trans Br Myco Soc 82:332–338

    Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Knudsen IMB, Hockenhull DK, Jensen DF, Elmholt S (1999) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72

    Google Scholar 

  • Kraiss H, Cullen EM (2008) Efficacy and non-target effects of reduced-risk insecticides on Aphis glycines (Hemiptera: Aphididae) and its biological control agent Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 101:391–398

    PubMed  CAS  Google Scholar 

  • Kwok OCH, Plattner R, Weisleder D, Wicklow DT (1992) A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J Chem Ecol 18:127–136

    PubMed  CAS  Google Scholar 

  • Laing SAK, Deacon JW (1990) Aggressiveness and fungal host ranges of mycoparasitic Pythium species. Soil Biol Biochem 22:905–911

    Google Scholar 

  • Lavandero B, Wratten S, Shishehbor P, Womer S (2005) Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen) movement after use of nectar in the field. Biol Control 34:152–158

    Google Scholar 

  • Lewis DH, Whipps JM, Cooke RC (1989) Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University, Cambridge, pp 191–217

    Google Scholar 

  • Lewis WJ, van Lenteren JC, Phatak SC, Tumlinson JH III (1997) A total system approach to sustainable pest management. Proc Natl Acad Sci U S A 94:12243–12248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu YB, Tabashnik BE, Pusztai-Carey M (1996) Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 89:798–804

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Lumsden RD, García-E R, Lewis JA, Frías-T GA (1987) Suppression of damping-off caused by Pythium spp in soil from the indigenous Mexican Chinampa agricultural system. Soil Biol Biochem 19:501–508

    Google Scholar 

  • Mandanhar R, Hooks CRR (2011) Using protector plants to reduce the incidence of papaya ring spot virus-watermelon strain in zucchini. Environ Entomol 40:391–398

    Google Scholar 

  • Mandanhar R, Hooks CRR, Wright MG (2009) Influence of cover crop and intercrop systems on Bemisia argentifolli (Hemiptera: Aleyrodidae) infestation and associated squash silverleaf disorder in zucchini. Environ Entomol 38:442–449

    Google Scholar 

  • Marahatta SP, Wang K-H, Sipes BS, Hooks CRR (2012a) Effects of Tagetes patula on active and inactive stages of Root-Knot nematodes. J Nematol 44:26–30

    PubMed  PubMed Central  Google Scholar 

  • Marahatta SP, Wang K-H, Sipes BS, Hooks CRR (2012b) Effects of Crotalaria juncea on anhydrobiotic state of Rotylenchulus reniformis. Nematropica 42:34–40

    Google Scholar 

  • Marban-Mendoza N, Dicklow MB, Zuckerman BM (1989) Evaluation of control of Meloidogyne incognita and Nacobbus aberrans on tomato by two leguminous plants. Rev Nematol 12:409–412

    Google Scholar 

  • Marshall AJ (2002) Sunn hemp (Crotalaria juncea) as an organic amendment in crop production. MS Thesis, University of Florida, Gainesville, FL

    Google Scholar 

  • McSorley R (2011) Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. J. Nematol. 43:69–81

    Google Scholar 

  • McSorley R, Gallaher RN (1996) Effect of yard waste compost on nematode densities and maize yield. J Nematol 28:655–660

    PubMed  CAS  PubMed Central  Google Scholar 

  • McSorley R, Dickson DW, de Brito JA (1994) Host status of selected tropical rotation crops to four populations of root-knot nematodes. Nematropica 24:45–53

    Google Scholar 

  • McSorley R, Wang K-H, Church G (2007) Suppression of root-knot nematodes in natural and agricultural soils. Appl Soil Ecol 39:291–298

    Google Scholar 

  • Meister RT, Sine C (2012) Crop protection handbook, vol 98. Meister Pro, Willoughby, OH. p 768

    Google Scholar 

  • Morandin LA, Winston ML, Franklin MT, Abbott VA (2005) Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Manage Sci 61:619–626

    CAS  Google Scholar 

  • Muller R, Gooch PS (1982) Organic amendments in nematode control. An examination of the literature. Nematropica 12:319–326

    Google Scholar 

  • Neher D. (2001) Role of nematodes in soil health and their use as indicators. J. Nematol. 33:161–168

    Google Scholar 

  • Nogueira MA, de Oliveira JS, Ferraz S, Dos Santos MA (1996) Nematicidal constituents in Mucuna aterrima and its activity on Meloidogyne incognita race 3. Nematol Mediterr 24:249–252

    Google Scholar 

  • NOSB (2004) National organic standards board: compost tea task force final report. http://www.ams.usda.gov/nosb/meetings/CompostTeaTaskForce-FinalReport.pdf. Accessed 22 Dec 2013

  • Oerke EC (2006) Crop losses to pests. J. Agricul. Sci. 144:31–43

    Google Scholar 

  • Oerke EC, Dehne HW, Schonbeck F, Weber A (1994) Crop production and crop protection: Estimated losses in major food and cash crops. Elsevier, Amsterdam, p 808

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments-a review. Appl Soil Ecol 44:101–115

    Google Scholar 

  • Oka Y, Pivonia S (2003) Effect of a nitrification inhibitor on nematicidal activity of organic and inorganic ammonia-releasing compounds against the root-knot nematode Meloidogyne javanica. Nematology 5:505–513

    CAS  Google Scholar 

  • Okorie CC, Ononuju CC, Okwujiako IA (2011) Management of Meloidogyne incognita with Pleurotus ostreatus and P. tuberregium in soybean. Int J Agric Biol 13:401–405

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescents Pseudomonas spp. involved in suppression of plant root pathogens. Microbial Rev 56:662–676

    Google Scholar 

  • Pachenari A, Dix NJ (1980) Production of toxins and wall degrading enzymes by Gliocladium roseum. Trans Br Myco Soc 74:561–566

    CAS  Google Scholar 

  • Pant A, Radovich TJK, Hue NV, Arancon NQ (2011) Effects of vermicompost tea (aqueous extract) on pak-choi yield, quality, and on soil biological properties. Compost Sci Util 19:279–292

    CAS  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Ann Rev Phytopathol 23:23–54

    Google Scholar 

  • Pathma J, Sakthivel N (2013) Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl Soil Ecol 70:33–47

    Google Scholar 

  • Patriquin DG, Baines D, Abbound A (1995) Diseases, pests, and soil fertility. In: Cook HF, Lee HC (eds) Soil management in sustainable agriculture. Wye College Press, London, pp 161–174

    Google Scholar 

  • Persson Y, Baath E (1992) Quantification of mycoparasitism by the nematode trapping fungus Arthobotrys oligospora on Rhizoctonia solani and the influence of nutrient levels. FEMS Microbiol Ecol 101:11–16

    CAS  Google Scholar 

  • Ploeg AT (2000) Effects of amending soil with Tagetes patula cv. Single gold on Meloidogyne incognita infestation of tomato. Nematology 2:489–493

    Google Scholar 

  • Ploeg AT (2002) Effect of selected marigold varieties on root-knot nematodes and tomato and melon yields. Plant Dis 86:505–508

    Google Scholar 

  • Ploeg AT, Maris PC (1999) Effect of temperature on suppression of Meloidogyne incognita by Tagetes cultivars. J Nematol 31:709–714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Price JF, Schuster DJ (1991) Effects of natural and synthetic insecticides on sweetpotato whitefly Bemisia tabaci (Homoptera: Aleyrodidae) and its hymenopterous parasitoids. Flo Entomol 74:60–68

    CAS  Google Scholar 

  • Powell MJ (1982) Ultrastructure of the host-parasite interface between Allomyces javanicus and its endoparasite Catenaria allomyces. Bot Gazelle 143:176–187

    Google Scholar 

  • Radovich T, Arancon N (2011) Tea Time in the tropics: a handbook for the compost tea production and use. CTAHR, University of Hawaii, Honolulu

    Google Scholar 

  • Rahman ML (1990) Effect of different cropping sequences on Root-Knot nematode, Meloidogyne graminicola, and yield of deep water rice. Nematol Mediterr 18:213–217

    Google Scholar 

  • Ritzinger CHSP, McSorley R (1998) Effect of castor and velvetbean organic amendments on Meloidogyne arenaria in greenhouse experiments. J Nematol 30:624–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–135

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roget DK (1995) Decline in root rot (Rhizoctonia solani AG-8) in wheat in a tillage and rotation experiment at Avon, South Australia. Aus J Exp Agric 35:1009–1013

    Google Scholar 

  • Saber M, Hejazi M, Hassan SA (2004) Effects of azadirachtin/neemazal on different stages and adult life table parameters of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J Econ Entomol 97:905–910

    PubMed  CAS  Google Scholar 

  • Sánchez-Moreno S, Ferris H (2007) Suppressive service of the soil food web: effects of environmental management. Agri. Ecosyst. Environ. 119:75–87

    Google Scholar 

  • Scheuerell S, Mahaffee W (2002) Compost tea: Principles and prospects for plant disease control. Compost Sci Util 10:313–338

    Google Scholar 

  • Sipes BS, Arakaki AS (1997) Root-knot nematode management in dryland taro with tropical crops. Suppl J Nematol 29:721–724

    CAS  Google Scholar 

  • Starr JL, Black MC (1995) Reproduction of Meloidogyne arenaria, M. incognita, and M. javanica on sesame. Suppl J Nematol 27:624–627

    CAS  Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Stirling GR (2008) The impact of farming systems on soil biology and soilborne diseases: examples from the Australian sugar and vegetable industries-the case for better integration of sugarcane and vegetable production and implications for future research. Australas Plant Pathol 37:1–18

    Google Scholar 

  • Stirling GR (2011) Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for further research. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Progress in Biological Control, vol 11. Springer, London

    Google Scholar 

  • Stirling GR, Dullahide SR, Nikulin A (1995) Management of lesion nematode (Pratylenchus jordanensis) on replanted apple trees. Aus J Exp Agric 35:247–258

    CAS  Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM et al (2005) Amendments of sugarcane trash induced suppressiveness to plant-parasitic nematodes in sugarcane soil. Australas Plant Pathol 34:203–211

    Google Scholar 

  • Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping, and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC, Boca Raton, pp 131–177

    Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigold (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    CAS  Google Scholar 

  • Suatmadji RW (1969) Studies on the effect of Tagetes species on plant parasitic nematodes. H. Veenman en Zonen, Wageningen, p 132

    Google Scholar 

  • Tamis WLM, van den Brink WJ (1998) Inventarisatie van ziekten en plagen in wintertarwe in gangbare, geintegreerde en ecologische teeltsystemen in Nederland in de periode 1993-1997 IPO-DLO Rapport nr. 98-01. Wageningen

    Google Scholar 

  • Taylor RM, Pfannenstiel RS (2008) Nectar feeding by wandering spiders on cotton plants. Environ Entomol 37:996–1002

    PubMed  CAS  Google Scholar 

  • Thoeming G, Poehling HM (2006) Integrating soil-applied azadirachtin with Amblyseius cucumeris (Acari: Phytoseiidae) and Hypoaspis aculeifer (Acari: Laelapidae) for the management of Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol 35:746–756

    Google Scholar 

  • Thorn BG, Barron GL (1984) Carnivorous mushrooms. Science 224:76–78

    PubMed  CAS  Google Scholar 

  • Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol (in press)

    Google Scholar 

  • Titus S (2012) Inducing systemic acquired resistance: helping plants help themselve. Greenhouse Grower, 5 Sept 2012. http://www.greenhousegrower.com/crop-inputs/inducing-Systemic-acquired-resistance-helping-plants-help-themselves/

  • Tognetti C, Laos F, Mazzarino MJ, Hernández MT (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Sci Util 13:6–13

    Google Scholar 

  • Tzean SS, Estey RH (1978) Schizophyllum commune Fr. as a destructive mycoparasite. Can J Microbiol 24:780–784

    PubMed  CAS  Google Scholar 

  • Vallad G (2013) Systemic acquired resistance: from basic concepts to applied reality. Seminar presentation for growers and other researchers. gcrec.ifas.ufl.edu

    Google Scholar 

  • Vallad G, Goodman RM (2004) Review and Interpretation: systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Google Scholar 

  • van Bruggen AH, Termorshuizen AJ (2003) Integrated approaches to root disease management in organic farming systems. Australas Plant Pathol 32:141–156

    Google Scholar 

  • Van Driesche RG, Lyon S, Nunn C (2006) Compatibility of spinosad with predaceious mites (Acari: Phyoseiidae) used to control weatern flower thrips (Thysanoptera: Thripidae) in greenhouse crops. Flo Entomol 89:396–401

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–483

    CAS  Google Scholar 

  • Wang K-H (2012) Cover crops as insectary plants to enhance above and below ground beneficial organisms. Hānai‘Ai Newsletter March-April-May 2012. http://www.ctahr.hawaii.edu/sustainag/news/articles/V11-Wang-insectary-covercrops.pdf

  • Wang K-H, Radovich T (2012) Cover cropping system and compost tea treatment for management of nematode, whiteflies, and pollinators. J Nematol 44:496 (abstract)

    Google Scholar 

  • Wang K-H, Sipes BS, Schmitt DP (2001) Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Target erecta. Nematropica 31:237–251

    Google Scholar 

  • Wang K-H, Sipes BS, Schmitt DP (2002) Management of Rotylenchulus reniformis in pineapple, Ananas comosus, by intercycle cover crops. J Nematol 34:106–114

    PubMed  PubMed Central  Google Scholar 

  • Wang K-H, McSorley R, Gallaher RN (2003) Effect of Crotalaria juncea amendment on nematode communities in soil with different agricultural histories. J Nematol 35:294–301

    PubMed  PubMed Central  Google Scholar 

  • Wang K-H, Hooks CRR, Marahatta SP (2011) Can using a strip-tilled living mulch system enhance organisms higher up in the soil food web hierarchy? Appl Soil Ecol 49:107–117

    Google Scholar 

  • Warnke SA, Chen SY, Wyse DL, Johnson GA, Porter PM (2008) Effect of rotation crops on hatch, viability, and development of Heterodera glycines. Nematology 10:869–882

    Google Scholar 

  • Weaver DB, Rodrı’guez-Ka’bana R, Carden EL (1998) Velvetbean and bahiagrass as rotation crops for management of Meloidogyne spp. and Heterodera glycines in soybean. J Nematol 30:563–568

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Westphal A, Becker JO (1999) Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434–440

    PubMed  CAS  Google Scholar 

  • Widmer TL, Abawi GS (2000) Mechanism of suppression of Meloidogyne hapla and its damage by a green manure of sudangrass. Plant Dis 84:562–568

    Google Scholar 

  • Yardim EN, Arancon NQ, Edwards CA, Oliver TJ, Byrne RJ (2006) Suppression by vermicomposts of tomato hornworm (Manduca quinquemaculata) and cucumber beetle (Acalymma vittatum) populations and damage. Pedobiologia 50:23–29

    Google Scholar 

  • You MP, Sivasithamparan K (1994) Hydrolysis of fluorescein diacetate in an avocado plantation mulch suppressive to Phytophthora cinnamomi and its relationship with certain biotic and abiotic factors. Soil Biol Biochem 26:1355–1361

    CAS  Google Scholar 

  • You MP, Sivasithamparan K (1995) Changes in microbial populations of an avocado plantation mulch suppressive to Phytophthora cinnamomi. Appl Soil Ecol 2:33–43

    Google Scholar 

  • Zasada IA, Klassen W, Meyer SLF, Codallo M, Abdul-Baki AA (2006) Velvetbean (Mucuna pruriens) extracts: impact on Meloidogyne incognitasurvival and on Lycopersicon esculentum and Lactuca sativa germination and growth. Pest Manage Sci 62:1122–1127

    CAS  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic virus by plant growth-promoting rhizobacteria. Biol Control 45:127–137

    Google Scholar 

  • Zinovieva SV, Vasyukovab NI, Udalovaa ZV, Gerasimova NG (2013) The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919). Biol Bull 40:297–303

    Google Scholar 

  • Zmora-Nahum S, Danon M, Hadar Y, Chen Y (2008) Chemical properties of compost extracts inhibitory to germination of Sclerotium rolfsii. Soil Biol Biochem 40:2523–2529

    CAS  Google Scholar 

Download references

Acknowledgement

This research was supported, in part, by USDA NIFA WIPM Programs (2011–00623, 2013-04430), and in part by University of Hawaii College of Tropical Agriculture and Human Resources (CTAHR) HATCH project (HAW09022-H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koon-Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, KH., Uchida, J. (2014). Plant Disease Prevention and Management in Sustainable Agricultural Systems. In: Nandwani, D. (eds) Sustainable Horticultural Systems. Sustainable Development and Biodiversity, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-06904-3_16

Download citation

Publish with us

Policies and ethics