Abstract
We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for ‘cheap’ parameter choices.
Keywords
- Partition of unity method
- Multiscale method
- LOD
- Upscaling
- Homogenization
This is a preview of subscription content, access via your institution.
Buying options



References
A. Abdulle, E. Weinan, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012). MR 2916381
H.W. Alt, Lineare Funktionalanalysis (Springer, Berlin/Heidelberg, 2006)
I. Babuška, U. Banerjee, J.E. Osborn, Meshless and generalized finite element methods: a survey of some major results, in Meshfree Methods for Partial Differential Equations, Bonn, 2001. Lecture Notes in Computational Science and Engineering, vol. 26 (Springer, Berlin, 2003), pp. 1–20. MR 2003426 (2004h:65116)
I. Babuška, G. Caloz, J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994). MR 1286212 (95g:65146)
I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011). MR 2801210 (2012e:65259)
I. Babuška, J.M. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1996)
T. Belytschko, N. Moës, S. Usui, C. Parimi, Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)
C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)
C.A. Duarte, I. Babuška, J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000). MR 1768540 (2001b:74053)
C.A. Duarte, D.-J. Kim, Analysis and applications of a generalized finite element method with global–local enrichment functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 487–504 (2008)
C.A. Duarte, J.T. Oden, An h-p adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139(1–4), 237–262 (1996)
C.A. Duarte, L.G. Reno, A. Simone, A high-order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72(3), 325–351 (2007). MR 2355178
T.-P. Fries, H.-G. Matthies, Classification and overview of meshfree methods. Technical report 2003-3, Technische Universität Braunschweig (2004)
A. Gloria, Reduction of the resonance error—Part 1: approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21(8), 1601–1630 (2011). MR 2826466
M. Griebel, M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2000). (electronic) MR 1785338 (2001i:65105)
M. Griebel, M.A. Schweitzer, A particle-partition of unity method. II. Efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002). (electronic) MR 1885078 (2003b:65118)
V. Gupta, C.A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 266(0), 23–39 (2013)
P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal. eFirst (2013)
P. Henning, D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149–1175 (2013). MR 3123820
M. Holst, Application of domain decomposition and partition of unity methods in physics and geometry. Domain decomposition methods in science and engineering, National Autonomous University of Mexico, México, 2003, pp. 63–78 (electronic). MR 2093735
T.Y. Hou, X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997). MR 1455261 (98e:73132)
T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.-B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998). MR 1660141 (99m:65239)
D.-J. Kim, C.A. Duarte, S.P. Proença, A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput. Mech. 50(5), 563–578 (2012) (English)
T.J. Liszka, C.A. Duarte, W. Tworzydlo, HP-meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)
A. Målqvist, Multiscale methods for elliptic problems. Multiscale Model. Simul. 9(3), 1064–1086 (2011). MR 2831590 (2012j:65419)
A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems. Published electronically (in Mathematics of Computation, 2014)
A. Målqvist, D. Peterseim, Computation of eigenvalues by numerical upscaling (2012). ArXiv e-prints 1212.0090
J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)
N. Moës, J.E. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)
J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, A new cloud-based HP finite element method. Comput. Methods Appl. Mech. Eng. 153(1–2), 117–126 (1998)
H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517–572 (2014)
M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10(1), 3–24 (2012). MR 2863778 (2012k:65150)
T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1–3), 43–69 (2000). MR 1734667 (2000h:74077)
T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190(32–33), 4081–4193 (2001). MR 1832655 (2002h:65195)
C. Wang, Z.-p. Huang, L.-k. Li, Two-grid partition of unity method for second order elliptic problems. Appl. Math. Mech. (English Ed.) 29(4), 527–533 (2008). MR 2405141 (2009b:65329)
E. Weinan, B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003). MR 1979846 (2004b:35019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Henning, P., Morgenstern, P., Peterseim, D. (2015). Multiscale Partition of Unity. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VII. Lecture Notes in Computational Science and Engineering, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-06898-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-06898-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06897-8
Online ISBN: 978-3-319-06898-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)