Skip to main content

Production of Medicines from Engineered Proteins in Plants: Proteins for a New Century

  • Chapter
  • First Online:

Abstract

Recombinant proteins have already delivered major benefits to human health in the relatively short time they have been available. Plant-based production strategies for these proteins—sometimes called molecular pharming—are becoming widespread and offer major utility, as well as overcoming some of the drawbacks of microbial and mammalian production systems. Flexible and rapid engineering methods, combined with benefits of high volume expression for protein isolation, or seed-based long-term storage, offer many options for medically-relevant protein production with direct benefits for people who need to use them. Metabolic and infectious disease treatments are among the early targets, but cancer treatment, circulatory aliments, allergy reduction, and wound repair and tissue regeneration support may result from proteins produced in plant systems. Selected samples of projects are provided to illustrate the current directions, including the first FDA approved recombinant plant drug to treat a disease. Other examples of projects aimed at communicable diseases, cancer, heart disease, and wound repair are included. When safety and efficacy are demonstrated, and with adherence to appropriate regulatory and biosafety frameworks, plant-derived recombinant proteins may offer high-volume and cost-effective delivery systems for many medical applications in this century.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ammann K (2013) Genomic misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation. N Biotechnol 31:1

    Article  PubMed  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39

    Article  PubMed Central  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TH, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242, www.pdb.org

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bliss M (2013) The Discovery of Insulin. University of Chicago Press, Chicago. ISBN 022607563X

    Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8(5):588–606

    Article  CAS  PubMed  Google Scholar 

  • Boseley S Anti-HIV drug made by GM plants begins trials in humans. The Guardian. July 19, 2011. Accessed on the web: http://www.theguardian.com/science/2011/jul/19/anti-hiv-drug-gm-plants

  • Both L, van Dolleweerd C, Wright E, Banyard AC, Bulmer-Thomas B, Selden D, Altmann F, Fooks AR, Ma JK (2013) Production, characterization, and antigen specificity of recombinant 62-71-3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB J 27(5):2055–2065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce TJ (2012) GM as a route for delivery of sustainable crop protection. J Exp Bot 63(2):537–541

    Article  CAS  PubMed  Google Scholar 

  • Chang X, Jorgensen AM, Bardrum P, Led JJ (1997) Solution structures of the R6 human insulin hexamer. Biochemistry 36(31):9409–9422

    Article  CAS  PubMed  Google Scholar 

  • Cox TM (2010) Gaucher disease: clinical profile and therapeutic developments. Biologics 4:299–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danigelis A (2012) Tobacco: more efficient flu vaccine-maker? Discovery.com. Sept 25. Accessed on the web: http://news.discovery.com/earth/weather-extreme-events/flu-vaccine-tobacco-120925.htm

  • De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8(5):529–563

    Article  PubMed  Google Scholar 

  • Domon E, Takagi H, Hirose S, Sugita K, Kasahara S, Ebinuma H, Takaiwa F (2009) 26-Week oral safety study in macaques for transgenic rice containing major human T-cell epitope peptides from Japanese cedar pollen allergens. J Agric Food Chem 57(12):5633–5638

    Article  CAS  PubMed  Google Scholar 

  • Dormitzer PR, Suphaphiphat P, Gibson DG, Wentworth DE, Stockwell TB, Algire MA, Alperovich N, Barro M, Brown DM, Craig S, Dattilo BM, Denisova EA, De Souza I, Eickmann M, Dugan VG, Ferrari A, Gomila RC, Han L, Judge C, Mane S, Matrosovich M, Merryman C, Palladino G, Palmer GA, Spencer T, Strecker T, Trusheim H, Uhlendorff J, Wen Y, Yee AC, Zaveri J, Zhou B, Becker S, Donabedian A, Mason PW, Glass JI, Rappuoli R, Venter JC (2013) Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med 5(185):185ra68

    Article  PubMed  Google Scholar 

  • Gerritsen VB (2001) Protein of the 20th century. Protein spotlight, vol 9, April. Accessed on the web: http://web.expasy.org/spotlight/back_issues/009

  • Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76(1):106–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97(11):705–716

    Article  CAS  PubMed  Google Scholar 

  • Greenham T, Altosaar I (2013) Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 956:311–326

    Article  PubMed  Google Scholar 

  • Guan ZJ, Guo B, Huo YL, Guan ZP, Dai JK, Wei YH (2013) Recent advances and safety issues of transgenic plant-derived vaccines. Appl Microbiol Biotechnol 97(7):2817–2840

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Weichert N, Rakhimova M, Conrad U (2013) Spider silks from plants—a challenge to create native-sized spidroins. Biotechnol J 8(10):1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Heuser S (2009) One girl’s hope, a nation’s dilemma. Boston Globe, Boston

    Google Scholar 

  • Hood G (2013) Finding an all-natural alternative to DEET. KUNC Radio 91.5. Accessed on the web 19 Oct 2013. http://kunc.org/post/finding-all-natural-alternative-deet

  • Huskens D, Schols D (2012) Algal lectins as potential HIV microbicide candidates. Mar Drugs 10(7):1476–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones DS, Podolsky SH, Greene JA (2012) The burden of disease and the changing task of medicine. N Engl J Med 366(25):2333–2338

    Article  CAS  PubMed  Google Scholar 

  • Kumar CS, Deepesh G, Mahavir Y, Archana T (2012) Edible vaccine: a new platform for the development of malaria vaccine. Crit Rev Eukaryot Gene Expr 22(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12):e15559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lössl AG, Clarke JL (2013) Conference scene: molecular pharming: manufacturing medicines in plants. Immunotherapy 5(1):9–12

    Article  PubMed  Google Scholar 

  • Maxmen A (2012) Drug-making plant blooms. Nature 485(7397):160

    Article  CAS  PubMed  Google Scholar 

  • McCormick AA (2011) Tobacco derived cancer vaccines for non-Hodgkin’s lymphoma: perspectives and progress. Hum Vaccin 7(3):305–312, Epub 2011 Mar 1

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goyal V (2013) Evaluation of designer crops for biosafety—a scientist’s perspective. Gene 515(2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hiroi T, Morita S, Tanaka K, Takaiwa F, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci U S A 104(26):10986–10991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nochi T, Yuki Y, Katakai Y, Shibata H, Tokuhara D, Mejima M, Kurokawa S, Takahashi Y, Nakanishi U, Ono F, Mimuro H, Sasakawa C, Takaiwa F, Terao K, Kiyono H (2009) A rice-based oral cholera vaccine induces macaque-specific systemic neutralizing antibodies but does not influence pre-existing intestinal immunity. J Immunol 183(10):6538–6544

    Article  CAS  PubMed  Google Scholar 

  • Paul M, van Dolleweerd C, Drake PM, Reljic R, Thangaraj H, Barbi T, Stylianou E, Pepponi I, Both L, Hehle V, Madeira L, Inchakalody V, Ho S, Guerra T, Ma JK (2011) Molecular pharming: future targets and aspirations. Hum Vaccin 7(3):375–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paul MJ, Teh AY, Twyman RM, Ma JK (2013) Target product selection—where can molecular pharming make the difference? Curr Pharm Des 19(31):5478–5485

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S (2012) Can a plant-based vaccine treat hypertension? Med Hypotheses 79(5):555–559

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Mendoza S, Govea-Alonso DO, Monreal-Escalante E, Fragoso G, Sciutto E (2012) Developing plant-based vaccines against neglected tropical diseases: where are we? Vaccine 31(1):40–48

    Article  PubMed  Google Scholar 

  • Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jiang X (2013) Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One 8(3):e58724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salazar-González JA, Rosales-Mendoza S (2013) A perspective for atherosclerosis vaccination: is there a place for plant-based vaccines? Vaccine 31(10):1364–1369

    Article  PubMed  Google Scholar 

  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5(5):579–590

    Article  CAS  PubMed  Google Scholar 

  • Shilo S, Roth S, Amzel T, Harel-Adar T, Tamir E, Grynspan F, Shoseyov O (2013) Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng Part A 19(13–14):1519–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shoseyov O, Posen Y, Grynspan F (2013) Human collagen produced in plants: more than just another molecule. Bioengineered 5(1):2165

    Google Scholar 

  • Sinclair D, Abba K, Zaman K, Qadri F, Graves PM (2011) Oral vaccines for preventing cholera. Cochrane Database Syst Rev 16(3):CD008603

    Google Scholar 

  • Stöger E (2013) Editorial: from plant biotechnology to bio-based products. Biotechnol J 8(10):1122–1123

    Article  PubMed  Google Scholar 

  • Tokuhara D, Yuki Y, Nochi T, Kodama T, Mejima M, Kurokawa S, Takahashi Y, Nanno M, Nakanishi U, Takaiwa F, Honda T, Kiyono H (2010) Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine. Proc Natl Acad Sci U S A 107(19):8794–8799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuhara D, Álvarez B, Mejima M, Hiroiwa T, Takahashi Y, Kurokawa S, Kuroda M, Oyama M, Kozuka-Hata H, Nochi T, Sagara H, Aladin F, Marcotte H, Frenken LG, Iturriza-Gómara M, Kiyono H, Hammarström L, Yuki Y (2013) Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest 123(9):3829–3838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO (2012) The top 10 causes of death. World Health Organization, Geneva. Fact sheet no. 318. http://www.who.int/mediacentre/factsheets/fs310/en/index.html. Accessed 15 Oct 2013

  • Xu X, Gan Q, Clough RC, Pappu KM, Howard JA, Baez JA, Wang K (2011) Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase. BMC Biotechnol 11:69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimran A, Brill-Almon E, Chertkoff R, Petakov M, Blanco-Favela F, Muñoz ET, Solorio-Meza SE, Amato D, Duran G, Giona F, Heitner R, Rosenbaum H, Giraldo P, Mehta A, Park G, Phillips M, Elstein D, Altarescu G, Szleifer M, Hashmueli S, Aviezer D (2011) Pivotal trial with plant cell-expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118(22):5767–5773

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Mangan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mangan, M.E. (2014). Production of Medicines from Engineered Proteins in Plants: Proteins for a New Century. In: Ricroch, A., Chopra, S., Fleischer, S. (eds) Plant Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-06892-3_20

Download citation

Publish with us

Policies and ethics