Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 18))

  • 1819 Accesses

Abstract

Many geological features are directed in 2-D or 3-D space, either as undirected or directed lines. Unit vectors are used for their spatial representation. Vectors with magnitudes can be used in some applications. Axes of pebbles in glacial drift provide an example of undirected lines; strengths of magnetization in rock samples exemplify the situation of directed lines to be represented as unit vectors or as vectors with magnitudes. Methods of unit vector field construction can be used to extract regional variation patterns. If there is no significant change of direction within the domain of study, various statistical frequency distribution models can be used for estimating the mean direction or pole and measures of dispersion. Well-known examples are the Fisher distribution for directed lines and the Scheidegger-Watson distribution for undirected lines. In this chapter, unit vector fields are fitted to regional data with variable mean directions using extensions of polynomial trend surface analysis. A relatively simple example consists of determining the preferred paleocurrent directions in sandstones of the Triassic Bjorne Formation on Melville Island, Canadian Arctic Archipelago. Later examples are from structural geology of the Eastern Alps. Directions of the axes of Hercynian minor folds in the crystalline basement of the Dolomites in northern Italy show relatively strong spatial variability, both locally and regionally. Averaging measurements from different outcrops within relatively small sampling domains shows patterns of systematic regional variations that represent Alpine reactivation of Hercynian schistosity planes (s-planes) causing rotations of the original minor fold axis directions to the south of the Periadriatic Lineament. Interpretation of seismic data from along the north-south TRANSALP profile that intersects the Periadriatic Lineament near Bruneck (Brunico) in the Pustertal (Pusteria) indicates rotation of Hercynian basement rocks into subvertical positions with subvertical to steeply east-dipping Hercynian minor fold axes. Subsequently, Late Miocene northward and north northeastward movements of the Adria microplate underneath the Eurasian plate resulted in sinistral motion of the crystalline basement rocks in the Bruneck area and strong neo-Alpine compression of basement rocks in the Pustertal to the east. At the same time there was overthrust sheet formation in the Strigno area along the Sugana Fault located to the south of the Italian Dolomites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agterberg FP (1959) On the measuring of strongly dispersed minor folds. Geol Mijnb 21:133–137

    Google Scholar 

  • Agterberg FP (1961) Tectonics of the crystalline basement of the Dolomites in North Italy. Kemink, Utrecht

    Google Scholar 

  • Agterberg FP (1974) Geomathematics. Elsevier, Amsterdam

    Google Scholar 

  • Agterberg FP (1985) Spatial analysis in the earth sciences. In: Glaesner PS (ed) The role of data in scientific progress. Proceedings of 9th international CODATA conference. Elsevier, Amsterdam, pp 9–18

    Google Scholar 

  • Agterberg FP (2004) Time, concepts and mathematics in geology. Zeitschr D Geol Gesell 155(2–4):211–219

    Google Scholar 

  • Agterberg FP (2012) Unit vector field fitting in structural geology. Zeitschr D Geol Wis 40(4/6):197–211

    Google Scholar 

  • Agterberg FP, Hills LV, Trettin HP (1967) Paleocurrent trend analysis of a delta in the Bjorne Formation (Lower Triassic) of northeastern Melville Island, Arctic Archipelago. J Sediment Petrol 37:852–862

    Google Scholar 

  • Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. American Institute of Biological Sciences, Washington, DC

    Google Scholar 

  • Benciolini L, Poli ME, Visonà D, Zanferrari A (2006) Looking inside Late Variscan tectonics: structural and metamorphic heterogeneity of the Eastern Southalpine Basement (NE Italy). Geodin Acta 19(1):17–32

    Article  Google Scholar 

  • Castellarin A, Vai GB (1982) Introduzione alla geologia strutturale del Sudalpina. In: Castellarin A, Vai GB (eds) Guida alla geologia del Sudalpino centro-orientale. Soc Italiana, Bologna

    Google Scholar 

  • Castellarin A, Nicolich R, Fantoni R, Cantelli L, Sella M, Selli M (2006) Structure of lithosphere beneath the eastern Alps (southern sector of the TRANSALP transect). Tectonophysics 414:259–282

    Article  Google Scholar 

  • Channell JET, Doglioni C (1994) Early Triassic paleomagnetic data from the Dolomites (Italy). Tectonics 13(1):157–166

    Article  Google Scholar 

  • Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond Ser A 217:295–305

    Article  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fisher NI, Lewis T, Embleton BJJ (1987) Statistical analysis of spherical data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gebrande H, Castellarin A, Lűschen E, Millahn K, Neubauer F, Nicolich R (2006) TRANSALP – A transect through a young collisional orogen: Introduction. Tectonophysics 414:1–7

    Article  Google Scholar 

  • Kissling E, Schmid SM, Lippitsch R, Ansorge J, Fűgenschuh B (2006) Lthosphere structure and tectonic evolution of the Alpine arc: new evidence from high-resolution teleseismic tomography. Geol Soc Lond Mem 32(1)

    Google Scholar 

  • Koch GS Jr, Link RF (1971) Statistical analysis of geological data. Wiley, New York

    Google Scholar 

  • Köster E (1964) Granulometrische und Morphometrische Messmethoden an Mineralkörnern, Steinen und sonstigen Stoffen. Enke, Stuttgart

    Google Scholar 

  • Krumbein WC (1939) Preferred orientations of pebbles in sedimentary deposits. J Geol 47:673–706

    Article  Google Scholar 

  • Laubscher H (2010) Jura, Alps and the boundary of the Adria subplate. Tectonophysics 438(3/4):223–239

    Article  Google Scholar 

  • Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res 108:1–15

    Google Scholar 

  • Loudon TV (1964) Computer analysis of orientation data in structural geology. Off Nav Res Geogr Br Tech Rep 13, pp 1–130

    Google Scholar 

  • Lűschen E, Borrini D, Gebrande H, Lammerer B, Millahn K, Neubauer K, Nicolich R (2006) TRANSALP-deep crustal Vibrosis and explosive seismic profiling in the Eastern Alps. Tectonophysics 414:9–38

    Article  Google Scholar 

  • Luth S (2011) Orogenesis and subduction in analog models. Gildeprint, Enschede

    Google Scholar 

  • Luth S, Willingshofer E, Sokoutis D, Cloetingh S (2010) Modelling surface expression of subduction polarity change: the Eastern Alps as transition zone? http://geomod2010.fc.ul.pt/abstracts/Luth%20et20al.pdf

  • Mancktelow NS, Stöckli G, Grollimund B, Műller W, Fűgenschuh B, Viola G, Seward D, Villa IM (2001) The DAV and Periadriatic fault systems in the Eastern Alps South of the Tauern window. Int J Earth Sci 90:593–622

    Article  Google Scholar 

  • Parker RL, Denham CR (1979) Interpolation of unit vectors. Geophys J R Astron Soc 58(3):685–687

    Article  Google Scholar 

  • Picardi L, Sani F, Moratti G, Cunningham D, Vittori E (2011) Present-day geodynamics of the circum-Adriatic region: an overview. J Geodyn 51:81–89

    Article  Google Scholar 

  • Potter PE, Pettijohn FJ (1963) Paleocurrents and basin analysis. Academic, New York

    Book  Google Scholar 

  • Ramsay JG (1960) The deformation of early linear structures in areas of repeated folding. J Geol 68:75–93

    Article  Google Scholar 

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill, New York

    Google Scholar 

  • Ratschbacher L, Frisch W, Linzer G, Merle O (1991) Lateral extrusion in the eastern Alps: Part 2. Structural analysis. Tectonics 10:257–271

    Article  Google Scholar 

  • Reiche P (1938) An analysis of cross-lamination of the Coconino sandstone. J Geol 46:905–932

    Article  Google Scholar 

  • Ring U, Richter C (1994) The Variscan structural and metamorphic evolution of the eastern South-alpine basement. J Geol Soc Lond 151:755–766

    Article  Google Scholar 

  • Sander B (1948) Einfűhrung in die Gefűgekunde der geologischen Körper. Springer, Vienna

    Book  Google Scholar 

  • Scheidegger AE (1965) On the statistics of the orientation of bedding planes, grain axes and similar sedimentological data. US Geol Surv Prof Pap 525:C164–C167

    Google Scholar 

  • Schmidegg O (1933) Neue Ergebnisse in den sűdlichen Őtztaler Alpen. Verh Geol B Anst 5–6:83–95

    Google Scholar 

  • Schmidegg O (1936) Steilachsige Tektonik und Schlingenbau auf der Sűdseite der Tiroler Zentralalpen. Geol B Anst 86(2):115–149

    Google Scholar 

  • Schulz B, Steenken A, Sigismund S (2008) Geodynamic evolution of an Alpine terrane – the Austroalpine basement to the South of the Tauern Widow as a part of the Adriatic Plate (Eastern Alps). Geol Soc Lond Spec Publ 298:5–44

    Article  Google Scholar 

  • Stampfli GM, Hochard C (2009) Plate tectonics of the Alpine realm. Geol Soc Lond Spec Publ 327:89–111

    Article  Google Scholar 

  • TRANSALP WORKING Group (2002) First deep seismic images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps. Geophys Res Lett 29(10):921–924. doi:10.1029/2002GLO14911

    Article  Google Scholar 

  • Vai GB (2002) Palaeozoic palaeotectonics of the eastern Southern Alps: implication for the TRANSALP Profile. Mem Sci Geol 54:97–100

    Google Scholar 

  • Watson GS (1971) Trend-surface analysis. Math Geol 3(3):215–226

    Article  Google Scholar 

  • Watson GS (1985) Interpolation and smoothing of directed and undirected line data. In: Krishnaia PR (ed) Multivariate analysis VI. Academic, New York, pp 613–625

    Google Scholar 

  • Whitten EHT (1966) Structural geology of folded rocks. Rand McNally, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agterberg, F. (2014). Statistical Analysis of Directional Features. In: Geomathematics: Theoretical Foundations, Applications and Future Developments. Quantitative Geology and Geostatistics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-06874-9_8

Download citation

Publish with us

Policies and ethics