Bifurcations of Dynamical Systems

  • Vadim S. Anishchenko
  • Tatyana E. Vadivasova
  • Galina I. Strelkova
Part of the Springer Series in Synergetics book series (SSSYN)


In the natural sciences, it turns out that the formulation of mathematical models leads to temporal evolution laws for state variables that depend on parameters. The values of these parameters are defined by system elements that do not change over time. When described mathematically, a wide class of physical problems lead to differential equations or maps which depend on one or several parameters. Fixing parameter values determines the type of solutions for given initial conditions, while variation of these values may result in both quantitative and qualitative changes in the nature of the solutions.


Hopf Bifurcation Bifurcation Point Stable Cycle Stable Limit Cycle Pitchfork Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anishchenko, V.S.: Dynamical Chaos – Models and Experiments. World Scientific, Singapore (1995)Google Scholar
  2. 2.
    Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Springer, Berlin (2002)Google Scholar
  3. 3.
    Drazin, P.G.: Nonlinear Systems. Cambridge University Press, Cambridge (1992)Google Scholar
  4. 4.
    Glendinning, P.: Stability, Instability, and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, Cambridge (1994)Google Scholar
  5. 5.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)Google Scholar
  6. 6.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2002/2004)Google Scholar
  7. 7.
    Marek, M., Schreiber, I.: Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge University Press, Cambridge (1991/1995)Google Scholar
  8. 8.
    Marsden, L.E., McCraken, V.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)Google Scholar
  9. 9.
    Moon, F.C.M.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)Google Scholar
  10. 10.
    Moon, F.C.M.: Chaotic Vibration: An Introduction for Applied Scientists and Engineers. Wiley, New York (2004)Google Scholar
  11. 11.
    Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)Google Scholar
  12. 12.
    Ogorzalek, M.J.: Chaos and Complexity in Nonlinear Electronic Circuits. World Scientific, Singapore (1997)Google Scholar
  13. 13.
    Schuster, H.G.: Deterministic Chaos. Physik-Verlag, Weinheim (1988)Google Scholar
  14. 14.
    Seydel, R.: Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Springer, New York (1994/2009)Google Scholar
  15. 15.
    Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (1986)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vadim S. Anishchenko
    • 1
  • Tatyana E. Vadivasova
    • 1
  • Galina I. Strelkova
    • 1
  1. 1.Department of Physics Instiute of Nonlinear DynamicsSaratov State UniversitySaratovRussia

Personalised recommendations