Model-Driven Event Query Generation for Business Process Monitoring

  • Michael Backmann
  • Anne Baumgrass
  • Nico Herzberg
  • Andreas Meyer
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8377)

Abstract

While executing business processes, a variety of events is produced that is valuable for getting insights about the process execution. Specifically, these events can be processed by Complex Event Processing(CEP) engines to deliver a base for business process monitoring. Mobile, flexible, and distributed business processes challenge existing process monitoring techniques, especially if process execution is partially done manually. Thus, it is not trivial to decide where the required business process execution information can be found, how this information can be extracted, and to which point in the process it belongs to. Tackling these challenges, we present a model-driven approach to support the automated creation of CEP queries for process monitoring. For this purpose, we decompose a process model that includes monitoring information into its structural components. Those are transformed to CEP queries to monitor business process execution based on events. For illustration, we show an implementation for Business Process Model and Notation(BPMN) and describe possible applications.

Keywords

Business Process Management Complex Event Processing Business Process Monitoring Event Pattern Language Query Generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baouab, A., Perrin, O., Godart, C.: An Optimized Derivation of Event Queries to Monitor Choreography Violations. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 222–236. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bernhardt, T., Vasseur, A.: Esper: Event stream processing and correlation. O’Reilly Media (2007), published at http://onjava.com/
  4. 4.
    Bülow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong, T.Y., Weske, M.: Monitoring of Business Processes with Complex Event Processing. In: BPM Workshops. Springer (2013) (accepted for publication)Google Scholar
  5. 5.
    Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the Understanding of BAM Technology for Real-time Decision Support. IJBIS 7(1), 1–26 (2011)CrossRefGoogle Scholar
  6. 6.
    Daum, M., Götz, M., Domaschka, J.: Integrating CEP and BPM: how CEP realizes functional requirements of BPM applications (industry article). In: DEBS, pp. 157–166 (2012)Google Scholar
  7. 7.
    Decker, G., Grosskopf, A., Barros, A.: A graphical notation for modeling complex events in business processes. In: EDOC, pp. 27–36. IEEE (2007)Google Scholar
  8. 8.
    EsperTech: Esper - Complex Event Processing, http://esper.codehaus.org (as of May 2013)
  9. 9.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2011)Google Scholar
  10. 10.
    Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards Process Evaluation in Non-automated Process Execution Environments. In: Services and Their Composition, ZEUS (2012)Google Scholar
  11. 11.
    Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process Management. In: EDOC. IEEE (2013) (accepted for publication)Google Scholar
  12. 12.
    Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing Complex Event Processes with Business Process Modeling Notation. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 78–90. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley (2002)Google Scholar
  14. 14.
    OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)Google Scholar
  15. 15.
    Rozsnyai, S., Lakshmanan, G.T., Muthusamy, V., Khalaf, R., Duftler, M.J.: Business Process Insight: An Approach and Platform for the Discovery and Analysis of End-to-End Business Processes. In: 2012 Annual of the SRII Global Conference (SRII), pp. 80–89. IEEE (2012)Google Scholar
  16. 16.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data & Knowledge Engineering 68(9), 793–818 (2009)CrossRefGoogle Scholar
  18. 18.
    Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-Based Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Backmann
    • 1
  • Anne Baumgrass
    • 1
  • Nico Herzberg
    • 1
  • Andreas Meyer
    • 1
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations