Skip to main content

Electromagnetic Waves and Optical Resonators

  • Chapter
  • First Online:

Abstract

Aims and Objectives

• To introduce some theory of electromagnetic waves.

• To introduce optical bistability and show some related devices.

• To discuss possible future applications.

• To apply some of the theory of nonlinear dynamical systems to model a real physical system.

On completion of this chapter, the reader should be able to

• understand the basic theory of Maxwell’s equations;

• derive the equations to model a nonlinear simple fiber ring (SFR) resonator;

• investigate some of the dynamics displayed by these devices and plot chaotic attractors;

• use a linear stability analysis to predict regions of instability and bistability;

• plot bifurcation diagrams using the first and second iterative methods;

• compare the results from four different methods of analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G.P. Agrawal, Applications in Nonlinear Fiber Optics, 2nd edn. (Academic, New York, 2008)

    Google Scholar 

  2. G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic, New York, 2012)

    Google Scholar 

  3. T. Bischofberger, Y.R. Shen, Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferometer. Phys. Rev. A 19, 1169–1176 (1979)

    Article  Google Scholar 

  4. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic, New York, 2008)

    Google Scholar 

  5. N.J. Doran, D. Wood, Nonlinear-optical loop mirror. Optics Lett. 13, 56–58 (1988)

    Article  Google Scholar 

  6. F.S. Felber, J.H. Marburger, Theory of nonresonant multistable optical devices. Appl. Phys. Lett. 28, 731 (1976)

    Article  Google Scholar 

  7. W.J. Firth, Stability of nonlinear Fabry-Perot resonators. Optics Comm. 39(5), 343–346 (1981)

    Article  Google Scholar 

  8. H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985)

    Google Scholar 

  9. K. Ikeda, H. Daido, O. Akimoto, Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45(9), 709–712 (1980)

    Article  Google Scholar 

  10. Y.H. Ja, Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect. IEEE J. Quantum Electron. 30(2), 329–333 (1994)

    Article  Google Scholar 

  11. H. Li, K. Ogusu, Analysis of optical instability in a double-coupler nonlinear fiber ring resonator. Optics Comm. 157, 27–32 (1998)

    Article  Google Scholar 

  12. S. Lynch, A.L. Steele, Nonlinear optical fibre resonators with applications in electrical engineering and computing, in Applications of Nonlinear Dynamics and Chaos in Engineering, vol. 1, ed. by S. Banerjee, M. Mitra, L. Rondoni (Springer, New York, 2011), pp. 65–84

    Google Scholar 

  13. S. Lynch, A.L. Steele, J.E. Hoad, Stability analysis of nonlinear optical resonators. Chaos Soliton Fract. 9(6), 935–946 (1998)

    Article  MATH  Google Scholar 

  14. P. Mandel, Theoretical Problems in Cavity Nonlinear Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  15. J.H. Marburger, F.S. Felber, Theory of a lossless nonlinear Fabry-Perot interferometer. Phys. Rev. A 17, 335–342 (1978)

    Article  Google Scholar 

  16. R. Matthews, Catch the wave. New Scientist 162(2189), 27–32 (1999)

    Google Scholar 

  17. H. Natsuka, S. Asaka, H. Itoh, K. Ikeda, M. Matouka, Observation of bifurcation to chaos in an all-optical bistable system. Phys. Rev. Lett. 50, 109–112 (1983)

    Article  Google Scholar 

  18. K. Ogusu, A.L. Steele, J.E. Hoad, S. Lynch, Corrections to and comments on “Dynamic behavior of reflection optical bistability in a nonlinear fiber ring resonator”. IEEE J. Quantum Electron. 33, 2128–2129 (1997)

    Article  Google Scholar 

  19. T. Schneider, Nonlinear Optics in Telecommunications (Springer, New York, 2004)

    Book  Google Scholar 

  20. S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sinica A 23, 153–158 (1980)

    MATH  Google Scholar 

  21. S.D. Smith, Towards the optical computer. Nature 307, 315–316 (1984)

    Article  Google Scholar 

  22. P.W. Smith, E.H. Turner, Appl. Phys. Lett 30, 280–281 (1977)

    Article  Google Scholar 

  23. A.L. Steele, S. Lynch, J.E. Hoad, Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback. Optics Comm. 137, 136–142 (1997)

    Article  Google Scholar 

  24. A. Szöke, V. Daneu, J. Goldhar, N.A. Kirnit, Bistable optical element and its applications. Appl. Phys. Lett. 15, 376 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynch, S. (2014). Electromagnetic Waves and Optical Resonators. In: Dynamical Systems with Applications using MATLAB®. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-06820-6_5

Download citation

Publish with us

Policies and ethics