Optical Properties of Wurtzitic Semiconductors and Epilayers

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 197)


We review the optical properties of bulk wurtzitic semiconductors. Reflectance and photoluminescence features are related to the crystal symmetry; selection rules for the optical process are introduced as well as the concepts of fee excitons and exciton-polaritons. The problem of the long-range Coulomb interaction in anisotropic uniaxial crystals is treated. Finally we discuss photoluminescence as an efficient tool for diagnosing doping in bulk semiconductors.


Valence band ordering Reflectivity rydberg series Resonances selection rules  excitons Polaritons Continuum of states Spin exchange interaction Valence missing electron Spin-flip Exciton-polariton  transverse wave Longitudinal wave Longitudinal transverse splitting energy Optical reflectivity GaN Strain fields Compression dilatation Oscillator strength Group velocities  density of state M-plane A-plane Orthorhombic GaN Excitonic dissociation Matrix representation Excitonic binding energy in GaN Aluminum nitride Strain fields in aluminum nitride Excitons and Polaritons in AlN Optical properties of bulk zinc oxide Optical properties of zinc oxide heteroepitaxies Polaritons in ZnO Excitonic binding: the influence of anisotropies Axial symmetry Wave functions Numerical approach Temperature effects Temperature effects in bulks Red-shift Epilayers versus bulks Photoluminescence free excitons free carriers intrinsic recombination Lineshape fitting Full width at half maximum Bound excitons and extrinsic recombination processes Chemical shift Localization energy Donor acceptor pairs Poisson’s law Huang-Rhys factor Yellow band Two electron transitions Non rigid quantum rotator Selection rules for two-electron transitions Two electron replicas photoluminescence spectra Semiconductor alloys Bowing parameter broadening Chemical disorder and potential fluctuations Localization mobility edge Photonic effects in films Quantization of polariton modes 


  1. 1.
    A.J. Fischer, W. Shan, G.H. Park, J.J. Song, D.S. Kim, D.S. Yee, R. Horning, B. Goldenberg, Phys. Rev. B 56, 1077 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Exciton Spectrum of Cadmium Sulfide, David G. Thomas and John J. Hopfield, Physical. Review 116, 573 (1959)Google Scholar
  3. 3.
    Aspects of polaritons, John J. Hopfield Proc. Int. Conf. Physics of semiconductors, Kyoto, 1966, J. Phys. Soc. Japan, 21, suppl.77-88, (1966), Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, J.J.Hopfield, Physical. Review 112, 1555 (1958)Google Scholar
  4. 4.
    Fano-Hopfield model and photonic band gaps for an arbitrary atomic lattice, Mauro Antezza, Yvan Castin. Phys. Rev. A 80, 013816, (2009)Google Scholar
  5. 5.
    Spatial dispersion effects in a mixed mode of exciton polariton in CdS, M.V.Lebedev, V.G.Lysenko and V.B. Timofeev, Sov. Phys. JETP 59, 1277, (1984)Google Scholar
  6. 6.
    Absorption, reflectance, and luminescence of GaN epitaxial layers, R.Dingle, D.D.Sell, S.E.Stokowski and M. Ilegems (Physical Review B 4, 1211, (1971)Google Scholar
  7. 7.
    Effects of biaxial strain on exciton resonance energies of hexagonal GaN heteroepitaxial layers, S. Chichibu, A. Shikanai, T. Azuhata, and T. Sota, A. Kuramata and K. Horino, S. Nakamura, 3766 Appl. Phys. Lett. 68 (26), 3766, (1996)Google Scholar
  8. 8.
    Reflectance and emission spectra of excitonic polaritons in, GaN, K. Torii, T. Deguchi, T. Sota, K. Suzuki, S. Chichibu, and S. Nakamura. Phys. Rev. B 60, 4723 (1999)Google Scholar
  9. 9.
    Determination of the spin-exchange interaction constant in wurtzite GaN, M.Julier, J. Campo, B. Gil, J.P.Lascaray, and S. Nakamura, Physical Review B 57, R6791, (1998)Google Scholar
  10. 10.
    Negative spin-exchange splitting in the exciton fine structure of AlN, Martin Feneberg, Maria Fatima Romero, Benjamin Neuschl, Klaus Thonke, Marcus Röppischer, Christoph Cobet, Norbert Esser, Matthias Bickermann, and Rüdiger Goldhahn, Appl. Phys. Lett. 102, 052112 (2013)Google Scholar
  11. 11.
    Huge electron-hole exchange interaction in aluminum nitride, Ryota Ishii, Mitsuru Funato, and Yoichi Kawakami, Phys. Rev. B 87, 161204 (2013)—Excitonic structure of bulk AlN from optical reflectivity and cathodoluminescence measurements, E. Silveira, J. A. Freitas, Jr., O. J. Glembocki, G. A. Slack, and L. J. Schowalter Phys. Rev. B 71, 041201 (2005)Google Scholar
  12. 12.
    Influence of exciton-phonon coupling and strain on the anisotropic optical response of wurtzite AlN around the band edge, Georg Rossbach, Martin Feneberg, Marcus Roppischer, Christoph Werner, Norbert Esser, Christoph Cobet, Tobias Meisch, Klaus Thonke, Armin Dadgar, Jrgen Blasing, Alois Krost, and Rudiger Goldhahn, Phys. Rev. B 83, 195202 (2011)Google Scholar
  13. 13.
    Transmission spectra of ZnO single crystals, WY. Liang and AD. Yoffe. Physical Review Letters 20, 59 (1968)Google Scholar
  14. 14.
    Valence-band ordering in ZnO, D. C. Reynolds, D. C. Look, and B. Jogai, C.W. Litton, G. Cantwell, W. C. Harsch. Phys. Rev. B 60, 2340 (1999)Google Scholar
  15. 15.
    Strain-fields effects and reversal of the nature of the fundamental valence band of ZnO epilayers, Bernard Gil, Alain Lusson, Vincent Sallet, Said-Assoumani Said-Hassani, Robert Triboulet, and Pierre Bigenwald Japanese Journal of Applied Physics Letters, 40, L1089, (2001)Google Scholar
  16. 16.
    The oscillator strengths of, A, B, and C excitons in ZnO films, Bernard Gil, Physical Review B Rapid, Communications 64, 201 310 (2001)Google Scholar
  17. 17.
    ZnO as a material mostly adapted for the realization of room-temperature polariton lasers, M.Zamfirescu, A.Kavokin, B.Gil, G.Malpuech, M.Kaliteevski, Physical Review B 65, 161 205–1 (2002)Google Scholar
  18. 18.
    Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal, S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, J. Appl. Phys. 93, 756, (2003)Google Scholar
  19. 19.
    Accurate determination of homogeneous and inhomogeneous excitonic broadening in ZnO by linear and nonlinear spectroscopies, E. Mallet, P. Disseix, D. Lagarde, M. Mihailovic, F. Reveret, T. V. Shubina, and J. Leymarie, Phys. Rev. B 87, 161202(R) (2013)Google Scholar
  20. 20.
    Optical anisotropy of A- and M-plane InN grown on free-standing GaN substrates, P. Schley, J. Rathel, E. Sakalauskas, G. Gobsch, M. Wieneke, J. Blasing, A. Krost, G. Koblmuller, J. S. Speck, and R. Goldhahn, Phys. Status Solidi A 207, 1062 (2010)Google Scholar
  21. 21.
    Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO, R. Hauschild, H. Priller, M. Decker, J. Bruckner, H. Kalt, C. Klingshirn, phys. stat. sol. (c) 3, 976–979 (2006)Google Scholar
  22. 22.
    Temperature dependence of the energy gap in semiconductors, Y. Varshni. Physica 34, 149 (1967)Google Scholar
  23. 23.
    Pässler modeling [Parameter Sets Due to Fittings of the Temperature Dependencies of Fundamental Bandgaps in Semiconductors, R. Paessler, Physica Status Solidi (b) 216, 975 (1999)Google Scholar
  24. 24.
    Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer, H. Teisseyre, P. Perlin, T. Suski, I. Grzegory, S. Porowski, J. Jun, A. Pietraszko, and T. D. Moustakas, J. Appl. Phys. 76, 2429 (1994)Google Scholar
  25. 25.
    Excitons in Degenerate Semiconductors, G. D. Mahan. Phys. Rev. 153, 882 (1967)Google Scholar
  26. 26.
    The determination of the bulk residual doping in indium nitride films using photoluminescence, M.Moret, S. Ruffenach, O Briot, and B Gil, Applied Physics Letters, 95, 031910, (2009)Google Scholar
  27. 27.
    Modeling of the free-electron recombination band in emission spectra of highly conducting n-GaN, B. Arnaudov, T. Paskova, E. M. Goldys, S. Evtimova, and B. Monemar, Phys. Rev. B 64, 045213, (2001)Google Scholar
  28. 28.
    Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels, B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69, 115216, (2004)Google Scholar
  29. 29.
    Effect of silicon and oxygen doping on donor bound excitons in bulk GaN, G. Pozina, S. Khromov, C. Hemmingsson, L. Hultman, and B. Monemar, Physical Review B 84, 165213 (2011)Google Scholar
  30. 30.
    Sharp bound and free exciton lines from homoepitaxial, AlN, Martin Feneberg, Benjamin Neuschl, Klaus Thonke, Ramon Collazo, Anthony Rice, Zlatko Sitar, Rafael Dalmau, Jinqiao Xie, Seiji Mita, and Rudiger Goldhahn. Phys. Status Solidi A 208, 1520 (2011)Google Scholar
  31. 31.
    Bound exciton and donoracceptor pair recombinations in ZnO, B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straburg, M. Dworzak, U. Haboeck, and A. V. Rodina, phys. stat. sol. (b) 241, 231 (2004)Google Scholar
  32. 32.
    Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films, K. Kornitzer, T. Ebner, K. Thonke, and R. Sauer, C. Kirchner, V. Schwegler, and M. Kamp, M. Leszczynski, I. Grzegory, and S. Porowski, Phys. Rev. B 60, 1471, (1999)Google Scholar
  33. 33.
    Internal structure of the neutral donor bound exciton complex in cubic zinc blende and wurtzite semiconductors, B.Gil, P.Bigenwald, M.Leroux, P.Paskov and B.Monemar, Physical Review B 75, 085204, (2007)Google Scholar
  34. 34.
    Recombination of free and bound excitons in GaN, B. Monemar, P. P. Paskov, J. P. Bergman, A. A. Toropov, T. V. Shubina, T. Malinauskas, and A. Usui, Physica Status Solidi (b) 245, 1723, (2008)Google Scholar
  35. 35.
    Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors, B.Gil, P.Bigenwald, P.Paskov and Bo Monemar, Physical Review B 84, 085211, (2010)Google Scholar
  36. 36.
    Band edge smearing in solid solutions, S.D Baranowski and A.L.Efros, Soviet Physics. Semiconductors 12, 1328 (1978)Google Scholar
  37. 37.
    Confined exciton-polariton modes in a thin, homo-epitaxial, GaN film grown by molecular beam epitaxy, Aurelien Morel, Thierry Taliercio, Pierre Lefebvre, Mathieu Gallart, Bernard Gil, Nicolas Grandjean, Jean Massies, Izabella Grzegory, and Sylvester Porowski, Materials Science and Engineering: B Volume 82, 173, (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut de Physique de MontpellierUniversity of Montpellier 2Montpellier Cedex 05France

Personalised recommendations