Skip to main content

Temporal Multivariate Networks

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8380)

Abstract

Networks that evolve over time, or dynamic graphs, have been of interest to the areas of information visualization and graph drawing for many years. Typically, the structure of the dynamic graph evolves as vertices and edges are added or removed from the graph. In a multivariate scenario, however, attributes play an important role and can also evolve over time. In this chapter, we characterize and survey methods for visualizing temporal multivariate networks. We also explore future applications and directions for this emerging area in the fields of information visualization and graph drawing.

Keywords

  • IEEE Transaction
  • Software Engineering
  • Computer Graphic
  • Large Graph
  • Information Visualization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-06793-3_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-06793-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Hadlak, S., Schumann, H., Schulz, H.: A modular degree-of-interest specification for the visual analysis of large dynamic networks. IEEE Transactions on Visualization and Computer Graphics (in press, 2014)

    Google Scholar 

  2. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data. Springer, London (2011)

    CrossRef  Google Scholar 

  3. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Archambault, D., Purchase, H.C.: The mental map and memorability in dynamic graphs. In: Hauser, H., Kobourov, S.G., Qu, H. (eds.) Proc. of the IEEE Pacific Visualization Symposium, pp. 89–96. IEEE (2012)

    Google Scholar 

  5. Archambault, D., Purchase, H.C.: The “map” in the mental map: Experimental results in dynamic graph drawing. International Journal of Human-Computer Studies 71(11), 1044–1055 (2013)

    CrossRef  MATH  Google Scholar 

  6. Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Transactions on Visualization and Computer Graphics 17(4), 539–552 (2011)

    CrossRef  MATH  Google Scholar 

  8. Barsky, A., Munzner, T., Gardy, J., Kincaid, R.: Cerebral: Visualizing multiple experimental conditions on a graph with biological context. IEEE Transactions on Visualization and Computer Graphics 14(6), 1253–1260 (2008)

    CrossRef  Google Scholar 

  9. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating networks. In: International AAAI Conference on Weblogs and Social Media, pp. 361–362 (2009)

    Google Scholar 

  10. Bender-deMoll, S., McFarland, D.A.: The art and science of dynamic network visualization. Journal of Social Structure 7(2) (2006)

    Google Scholar 

  11. Bettini, C., Jajodia, S., Wang, S.X.: Time Granularities in Databases, Data Mining, and Temporal Reasoning. Springer, Berlin (2000)

    CrossRef  MATH  Google Scholar 

  12. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.: Graphdice: A system for exploring multivariate social networks. Computer Graphics Forum 29(3), 863–872 (2010)

    CrossRef  Google Scholar 

  13. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  14. Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analysis of dynamic discourse. In: Proc. of the IEEE Symposium on Information Visualization, pp. 145–151 (2002)

    Google Scholar 

  15. Brandes, U., Fleischer, D., Puppe, T.: Dynamic spectral layout with an application to small worlds. Journal of Graph Algorithms and Applications 11(2), 325–343 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Brandes, U., Indlekofer, N., Mader, M.: Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Social Networks, 291–308 (June 2011)

    Google Scholar 

  17. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)

    Google Scholar 

  18. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  19. Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  20. Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  21. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for scalable dynamic graph visualization. IEEE Transactions on Visualization and Computer Graphics 17(12), 2344–2353 (2011)

    CrossRef  Google Scholar 

  22. Byelas, H., Telea, A.: Visualization of areas of interest in software architecture diagrams. In: ACM SoftVis 2006, pp. 105–114 (2006)

    Google Scholar 

  23. Cohen, J.D.: Drawing graphs to convey proximity: An incremental arrangement method. ACM Transactions on Computer-Human Interaction 4(3), 197–229 (1997)

    CrossRef  Google Scholar 

  24. Collberg, C., Kobourov, S.G., Nagra, J., Pitts, J., Wampler, K.: A system for graph-based visualization of the evolution of software. In: ACM SoftVis 2003, pp. 77–86 (2003)

    Google Scholar 

  25. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Transactions on Visualization and Computer Graphics 15(6), 1009–1016 (2009)

    CrossRef  Google Scholar 

  26. Crnovrsanin, T., Liao, I., Wuy, Y., Ma, K.L.: Visual recommendations for network navigation. In: Proc. of the 13th Eurographics/IEEE - VGTC Conference on Visualization, EuroVis 2011, pp. 1081–1090. Eurographics Association, Aire-la-Ville (2011)

    Google Scholar 

  27. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., Tong, X.: Textflow: Towards better understanding of evolving topics in text. IEEE Transactions on Visualization and Computer Graphics 17(12), 2412–2421 (2011)

    CrossRef  Google Scholar 

  28. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software. Springer, Berlin (2010)

    MATH  Google Scholar 

  29. Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–30. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  30. Dux, B., Iyer, A., Debray, S.K., Forrester, D., Kobourov, S.G.: Visualizing the behavior of dynamically modifiable code. In: IWPC, pp. 337–340 (2005)

    Google Scholar 

  31. Dwyer, T., Gallagher, D.R.: Visualising changes in fund manager holdings in two and a half-dimensions. Information Visualization 3, 227–244 (2004)

    CrossRef  Google Scholar 

  32. Dwyer, T.: Extending the WilmaScope 3D Graph Visualisation System – Software Demonstration. In: Hong, S.H. (ed.) APVIS. CRPIT, vol. 45, pp. 39–45. Australian Computer Society (2005)

    Google Scholar 

  33. Elmqvist, N., Fekete, J.D.: Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization and Computer Graphics 16(3), 439–454 (2009)

    CrossRef  Google Scholar 

  34. Erten, C., Kobourov, S., Le, V., Navabi, A.: Simultaneous graph drawing: layout algorithms and visualization schemes. Journal of Graph Algorithms and Applications 9(1), 165–182 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  35. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring the computing literature using temporal graph visualization. In: Electronic Imaging 2004, pp. 45–56 (2004)

    Google Scholar 

  36. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  37. Farrugia, M., Quigley, A.: Cell phone mini challenge: Node-link animation award animating multivariate dynamic social networks. In: IEEE Visual Analytics Science and Technology, pp. 215–216 (October 2008)

    Google Scholar 

  38. Farrugia, M., Quigley, A.: Effective temporal graph layout: A comparative study of animation versus static display methods. Journal of Information Visualization 10(1), 47–64 (2011)

    Google Scholar 

  39. Feng, K.C., Wang, C., Shen, H.W., Lee, T.Y.: Coherent time-varying graph drawing with multi-focus+context interaction. IEEE Transactions on Visualization and Computer Graphics (2011)

    Google Scholar 

  40. Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael: A system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 454–464. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  41. Frank, A.U.: Different Types of “Times” in GIS. In: Egenhofer, M.J., Golledge, R.G. (eds.) Spatial and Temporal Reasoning in Geographic Information Systems, pp. 40–62. Oxford University Press, New York (1998)

    Google Scholar 

  42. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Transactions on Visualization and Computer Graphics 14, 727–740 (2008)

    CrossRef  Google Scholar 

  43. Frishman, Y., Tal, A.: Dynamic drawing of clustered graphs. In: Proc. of the IEEE Symposium on Information Visualization, pp. 191–198. IEEE Computer Society, Washington, DC (2004)

    CrossRef  Google Scholar 

  44. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice and Experience 21(11), 1129–1164 (1991)

    CrossRef  Google Scholar 

  45. Furnas, G.W.: Generalized fisheye views. In: Human Factors in Computing Systems CHI, pp. 16–23 (1986)

    Google Scholar 

  46. Gajer, P., Kobourov, S.G.: GRIP: Graph drawing with intelligent placement. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  47. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1994)

    Google Scholar 

  48. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. In: Proc. of the IEEE Pacific Visualization Symposium, pp. 73–80 (2012)

    Google Scholar 

  49. Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic graph drawing of sequences of orthogonal and hierarchical graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 228–238. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  50. Görke, R., Hartmann, T., Wagner, D.: Dynamic graph clustering using minimum-cut trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  51. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering of dynamic graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 436–448. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  52. Hachul, S.: A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs. Ph.D. thesis, Universität zu Köln (2002)

    Google Scholar 

  53. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Supporting Large Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer Graphics 15(6), 953–960 (2009)

    CrossRef  Google Scholar 

  54. Harel, D., Koren, Y.: Graph drawing by high-dimensional embedding. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 207–219. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  55. Harrower, M.: Tips for designing effective animated maps. Cartographic Perspectives 44, 63–65 (2003)

    CrossRef  Google Scholar 

  56. Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: Proc. of the IEEE Symposium on Information Visualization, pp. 32–39 (2005)

    Google Scholar 

  57. Hoogendorp, H., Ersoy, O., Reniers, D., Telea, A.: Extraction and visualization of call dependencies for large C/C++ code bases: A comparative study. In: Proc. ACM VISSOFT, pp. 137–145 (2009)

    Google Scholar 

  58. Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as maps. IEEE Computer Graphics and Applications 30(6), 54–66 (2010)

    CrossRef  Google Scholar 

  59. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps. In: Proc. of the IEEE Pacific Visualization Symposium, pp. 33–40 (2012)

    Google Scholar 

  60. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer (2009)

    Google Scholar 

  61. Jaramillo, C.M.Z., Gelbukh, A., Isaza, F.A.: Pre-conceptual schema: A conceptual-graph-like knowledge representation for requirements elicitation. In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI), vol. 4293, pp. 27–37. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  62. Joia, P., Paulovich, F.V., Coimbra, D., Cuminato, J.A., Nonato, L.G.: Local affine multidimensional projection. IEEE Transactions on Visualization and Computer Graphics 17, 2563–2571 (2011)

    CrossRef  Google Scholar 

  63. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  64. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proc. of the International Conference on Advanced Visual Interfaces, AVI 2010, pp. 241–248. ACM, New York (2010)

    Google Scholar 

  65. Koren, Y., Carmel, L., Harel, D.: ACE: A fast multiscale eigenvectors computation for drawing huge graphs. In: Proc. of the IEEE Symposium on Information Visualization, pp. 137–145 (2002)

    Google Scholar 

  66. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. IEEE Transactions on Visualization and Computer Graphics 12(5), 805–812 (2006)

    CrossRef  Google Scholar 

  67. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer (2006)

    Google Scholar 

  68. Lyons, K.A.: Cluster busting in anchored graph drawing. In: CASCON, pp. 7–17 (1992)

    Google Scholar 

  69. Mashima, D., Kobourov, S.G., Hu, Y.: Visualizing dynamic data with maps. IEEE Transactions on Visualization and Computer Graphics 18(9), 1424–1437 (2012)

    CrossRef  Google Scholar 

  70. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)

    Google Scholar 

  71. Moody, J., McFarland, D., Bender-DeMoll, S.: Dynamic network visualization. American Journal of Sociology 110(4), 1206–1241 (2005)

    CrossRef  Google Scholar 

  72. Moreta, S., Telea, A.: Multiscale visualization of dynamic software logs. In: Proc. Eurovis, pp. 11–18 (2007)

    Google Scholar 

  73. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-Aware Navigation in Large Networks. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 2319–2328 (2009)

    Google Scholar 

  74. Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE Transactions on Visualization and Computer Graphics 14(6), 1301–1308 (2008)

    CrossRef  Google Scholar 

  75. Muelder, C., Ma, K.L.: A treemap based method for rapid layout of large graphs. In: Proc. of the IEEE Pacific Visualization Symposium, pp. 231–238 (2008)

    Google Scholar 

  76. Muelder, C.W., Crnovrsanin, T., Ma, K.L.: Egocentric storylines for visual analysis of large dynamic graphs. In: Proc. of 1st IEEE Workshop on Big Data Visualization (BigDataVis), pp. 56–62 (October 2013)

    Google Scholar 

  77. Xkcd #657: Movie narrative charts (December 2009), http://xkcd.com/657

  78. Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 425–436. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  79. North, S.C.: Incremental layout in DynaDAG. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  80. Ogawa, M., Ma, K.L.: Software evolution storylines. In: Proc. of the International Symposium on Software Visualization (SoftVis 2010), pp. 35–42. ACM, New York (2010)

    CrossRef  Google Scholar 

  81. Ogievetsky, V.: Plotweaver xkcd/657 creation tool (March 2009), https://graphics.stanford.edu/wikis/cs448b-09-fall/FPOgievetskyVadim

  82. Orso, A., Jones, J., Harrold, M.J.: Visualization of program-execution data for deployed software. In: Proc. ACM SOFTVIS, pp. 67–75 (2003)

    Google Scholar 

  83. Paulovich, F., Eler, D., Poco, J., Botha, C., Minghim, R., Nonato, L.G.: Piece wise Laplacian-based projection for interactive data exploration and organization. Computer Graphics Forum 30(3), 1091–1100 (2011)

    CrossRef  Google Scholar 

  84. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Transactions on Visualization and Computer Graphics 14(3), 564–575 (2008)

    CrossRef  Google Scholar 

  85. Paulovich, F.V., Silva, C., Nonato, L.G.: Two-phase mapping for projecting massive data sets. IEEE Transactions on Visualization and Computer Graphics 16, 1281–1290 (2010)

    CrossRef  Google Scholar 

  86. Pfleeger, S.L., Atlee, J.M.: Software Engineering: Theory and Practice, 4th edn. Prentice Hall (2009)

    Google Scholar 

  87. Pretorius, A., van Wijk, J.: Visual inspection of multivariate graphs. Computer Graphics Forum 27(3), 967–974 (2008)

    CrossRef  Google Scholar 

  88. Purchase, H., Samra, A.: Extremes are better: Investigating mental map preservation in dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  89. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. Computer Graphics Forum 30(3), 1061–1070 (2011)

    CrossRef  Google Scholar 

  90. Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of animation in trend visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1325–1332 (2008)

    CrossRef  Google Scholar 

  91. Rufiange, S., McGuffin, M.J.: DiffAni: Visualizing dynamic graphs with a hybrid of difference maps and animation. IEEE Transactions on Visualization and Computer Graphics 19(12), 2556–2565 (2013)

    CrossRef  Google Scholar 

  92. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual, 2nd edn. Addison-Wesley (2004)

    Google Scholar 

  93. Saffrey, P., Purchase, H.: The “mental map” versus “static aesthetic” compromise in dynamic graphs: A user study. In: Proc. of the 9th Australasian User Interface Conference (AUIC2008), pp. 85–93 (2008)

    Google Scholar 

  94. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In: SDM, pp. 581–586. SIAM (2007)

    Google Scholar 

  95. Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating for large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 487–498. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  96. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)

    CrossRef  MATH  Google Scholar 

  97. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of overlapping sets. Computer Graphics Forum 28(3), 967–974 (2009)

    CrossRef  Google Scholar 

  98. Skupin, A., Fabrikant, S.I.: Spatialization methods: a cartographic research agenda for non-geographic information visualization. Cartography and Geographic Information Science 30, 95–119 (2003)

    CrossRef  Google Scholar 

  99. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. IEEE Transactions on Visualization and Computer Graphics 18(12), 2679–2688 (2012)

    CrossRef  Google Scholar 

  100. Telea, A., Voinea, L.: An interactive reverse engineering environment for large-scale C++ code. In: Proc. ACM SOFTVIS, pp. 67–76 (2008)

    Google Scholar 

  101. Telea, A., Voinea, L., Sassenburg, H.: Visual tools for software architecture understanding: A stakeholder perspective. IEEE Software 27(6), 46–53 (2010)

    CrossRef  Google Scholar 

  102. Tufte, E.R.: Envisionning Information. Graphics Press (1990)

    Google Scholar 

  103. Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proc. of the IEEE Symposium on Information Visualization, pp. 51–58 (1995)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Archambault, D. et al. (2014). Temporal Multivariate Networks. In: Kerren, A., Purchase, H.C., Ward, M.O. (eds) Multivariate Network Visualization. Lecture Notes in Computer Science, vol 8380. Springer, Cham. https://doi.org/10.1007/978-3-319-06793-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06793-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06792-6

  • Online ISBN: 978-3-319-06793-3

  • eBook Packages: Computer ScienceComputer Science (R0)