Polynomial Compensation of Odd Symmetric Nonlinear Actuators via Neural Network Modeling and Neural Network Describing Function

  • O. KuljacaEmail author
  • K. Horvat
  • J. Gadewadikar
  • B. Tare
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 313)


Paper deals with polynomial compensation of odd symmetric nonlinear actuators. Most actuators are nonlinear sporting odd symmetric nonlinearities such as deadzone and saturation. One way of dealing with such actuators is to try to compensate for nonlinearities by polynomial representation of inverse nonlinearity. Compensated actuators can improve behavior of the system, but then arises the problem of stability analysis because compensated nonlinearity is now complex nonlinearity not described in common literature. One way of dealing with such problem is to perform stability analysis via describing function method. Paper describes the method for compensating nonlinearities, recording describing function and performing stability analysis.


Neural network Polynomial compensation Odd symmetrical nonlinearities Compensated actuators 



Research was partially supported by HZZZ grant 09/193 Fuzzy Logic Adaptive Elastic Controller.


  1. 1.
    Kreyszig, E. (1993). Advanced Engineering Mathematics (7), John Wiley and Sons, New York, USAGoogle Scholar
  2. 2.
    Novogranov, B.N. (1986). Determination of Frequency Domain Characteristics of Nonlinear Systems (in Russian), Masinostroenie, Moskow, RussiaGoogle Scholar
  3. 3.
    Kuljaca, O., Tesnjak, S., Vukić, Z. (1999). Describing Function of Mamdani Type Fuzzy Controller with Input Signals Derived From Single System Input and Singleton Ouput Membership Functions, Proceedings of the 1999 IEEE Hong Kong Symposium on Robotics and Control, Volume I, HKSRC ‘99, Hong Kong, 1999.Google Scholar
  4. 4.
    Sijak, T., Kuljaca, O., Antonic, A., Kuljaca, Lj., (2005). Analytical Determination of Describing Function of Nonlinear Element with Fuzzy Logic, Proceedings of the IEEE International Symposium on Industrial Electronics 2005, ISBN 0-7803-8739-2, Dubrovnik, Croatia, June 2005Google Scholar
  5. 5.
    Sijak, T., Kuljaca, O., Kuljaca, Lj. (2004). Describing function of generalized static characteristic of nonlinear element, Proceedings of REDISCOVER 2004, Southeastern Europe, USA, Japan and European Community Workshop on Research and Education in Control and Signal Processing, ISBN 953-184-077-6, Cavtat, Croatia, June 2004Google Scholar
  6. 6.
    Sijak, T., Kuljaca, O., Kuljaca, Lj., (2007). Engineering Procedure for Analysis of Nonlinear Structure Consisting of Fuzzy Element and Typical Nonlinear Element, Proceedings of the 15 th Mediterranean Conference on Control and Automation, Athens, Greece, July 2007Google Scholar
  7. 7.
    Sijak, T., Kuljaca, O., Kuljaca, Lj., (2007). Computer Aided Harmonic Linearization of SISO Systems Using Linearly Approximated Static Characteristic. Proceedings of EUROCON 2007 The International Conference on Computer as a Tool. ISBN 1-4244-0813-X, Warsaw, Poland, September 2007.Google Scholar
  8. 8.
    Sijak, T., Kuljaca, O., Tesnjak, S. (2001). Stability analysis of fuzzy control system using describing function method, Proceedings of 9th Mediterranean Conference on Control and Automation, ISBN 953-6037-35-1, Dubrovnik Croatia, June2001Google Scholar
  9. 9.
    Slotine, J.J.E., Li, W. (1991). Applied Nonlinear Control, Prentice Hall, ISBN 0-13-040890-5, Engelwood Cliffs, New Jersey, USAGoogle Scholar
  10. 10.
    Schwartz, C., Gran, R. (2001). Describing Function Analysis Using MATLAB and Simulink. IEEE Control Systems Magazine, Vol. 21, No. 4, (August 2001), pp. 19-26, ISSN 1066-033XGoogle Scholar
  11. 11.
    Vukic, Z., Kuljaca, Lj., Donlagic, D., Tesnjak, S. (2003). Nonlinear Control Systems, Marcel Dekker, ISBN 0-8247-4112-9, New York, USAGoogle Scholar
  12. 12.
    Netushil et al. Theory of Automatic Control, Mir, Moscow 1978Google Scholar
  13. 13.
    Kuljaca, O., Horvat, K., Gadewadikar, J., "Describing function analysis of systems with NN compensated odd symmetric nonlinear actuators", Proceedings of the 35th International Convention MIPRO 2012, pp. 788-793, Opatija, Croatia, May 2012Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • O. Kuljaca
    • 1
    Email author
  • K. Horvat
    • 1
  • J. Gadewadikar
    • 2
  • B. Tare
    • 3
  1. 1.Control Engineering DepartmentBrodarski InstituteZagrebCroatia
  2. 2.Systems Research InstituteAlcorn State UniversityLormanUSA
  3. 3.Deloitte ConsultingNew YorkUSA

Personalised recommendations