Skip to main content

Bioclimatic Modelling: A Machine Learning Perspective

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 313))

Abstract

Many machine learning (ML) approaches are widely used to generate bioclimatic models for prediction of geographic range of organism as a function of climate. Applications such as prediction of range shift in organism, range of invasive species influenced by climate change are important parameters in understanding the impact of climate change. However, success of machine learning-based approaches depends on a number of factors. While it can be safely said that no particular ML technique can be effective in all applications and success of a technique is predominantly dependent on the application or the type of the problem, it is useful to understand their behaviour to ensure informed choice of techniques. This paper presents a comprehensive review of machine learning-based bioclimatic model generation and analyses the factors influencing success of such models. Considering the wide use of statistical techniques, in our discussion we also include conventional statistical techniques used in bioclimatic modelling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allouche, O., A. Tsoar & R.Kadmon, Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS), J. Applied Ecology, Vol. 43, 2006, pp. 1223–1232.

    Google Scholar 

  2. Anderson M. C., Watts J. M., Freilich J. E., Yool S. R., Wakefield G. I., McCauley J. F., Fahnestock P. B., Regression-tree modeling of desert tortoise habitat in the central Mojave desert. Ecological Applications, Vol. 10, No. 3, 2000, pp. 890–900.

    Google Scholar 

  3. Anderson R. P., Martínez-Meyer E., Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador, Biological Conservation, Vol. 116, No. 2, 2004, pp. 167–179.

    Google Scholar 

  4. Anderson, R.P., Lew, D., Peterson, A.T., Evaluating predictive models of species’ distributions: criteria for selecting optimal models, Ecological. Modelling, Vol. 162, 2003, pp. 211–232.

    Google Scholar 

  5. Austin M., Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecological Modelling, Vol. 200 (1–2): 2007, pp. 1–19.

    Google Scholar 

  6. Austin, M.P., Meyers, J.A., Current approaches to modelling the environmental niche of eucalyptus: implication for management of forest biodiversity, Forest Ecology Management, Vol. 85, 1996, pp. 95–106.

    Google Scholar 

  7. Bakkenes, M., Alkemade, J.R.M., Ihle, R., Leemans, R., Latour, J.B., Assessing effects of forecasting climate change on the diversity and distribution of European higher plants for 2050, Global Change Biology, Vol. 8, 2002, pp. 390–407.

    Google Scholar 

  8. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J., Classification and regression trees, Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. ISBN 978-0412048418, 1984.

    Google Scholar 

  9. Broennimann, O. et al., Evidence of climatic niche shift during biological invasion, Ecology Letters, Vol. 10, 2007, pp. 701–709.

    Google Scholar 

  10. Brosse S., Lek S., Townsend C. R., Abundance, diversity, and structure of freshwater invertebrates and fish communities: an artificial neural network approach, New Zealand Journal of Marine and Freshwater Research, Vol. 35, No. 1, 2001, pp. 135–145.

    Google Scholar 

  11. Chen D. G., Hargreaves N. B., Ware D. M., Liu Y. A fuzzy logic model with genetic algorithm for analyzing fish stock-recruitment relationships, Canadian Journal of Fisheries and Aquatic Science, Vol. 57, No. 9, 2000, pp. 1878–1887.

    Google Scholar 

  12. Cornuet J. M., Aulagnier S., Lek S., Franck P., Solignac M., Classifying individuals among infraspecific taxa using microsatellite data and neural networks, Comptes rendus de l’Académie des sciences, Série III, Sciences de la vie, Vol. 319, No. 12, 1996, pp. 1167–1177.

    Google Scholar 

  13. Cushing J. B., Wilson T., Eco-informatics for 190 THE QUARTERLY REVIEW OF BIOLOGY Volume 83 decision makers advancing a research agenda, Data Integration in the Life Sciences: Second International Workshop, DILS 2005, San Diego, CA, USA, July 20–22, 2005, Proceedings, Lecture Notes in Computer Science, Volume 3615, edited by B. Luda¨scher and L. Raschid. Berlin (Germany): Springer-Verlag, 2005, pp. 325–334.

    Google Scholar 

  14. D’Angelo D. J., Howard L. M., Meyer J. L., Gregory S. V., Ashkenas L. R., Ecological uses for genetic algorithms: predicting fish distributions in complex physical habitats. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 52, 1995, pp. 1893–1908.

    Google Scholar 

  15. De’Ath, G., Fabricius, K.E., Classification and regression treers: a powerful yet simple technique for ecological data analysis. Ecology, Vol. 81, 2000, pp. 3178–3192.

    Google Scholar 

  16. Djoko, S.; Cook, D.; and Holder, L. Analyzing the Benefits of Domain Knowledge in Substructure Discovery, Proceedings of KDD-95: First International Conference on Knowledge Discovery and Data Mining, Menlo Park, Calif.: American Association for Artificial Intelligence, 1995, pp. 5–80.

    Google Scholar 

  17. Drake J. M., Lodge D. M., Forecasting potential distributions of nonindigenous species with a genetic algorithm. Fisheries, Vol. 31, 2006, pp. 9–16.

    Article  Google Scholar 

  18. Dzeroski, S. 1996. Inductive Logic Programming for Knowledge Discovery in Databases, Advances in Knowledge Discovery and Data Mining, eds. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Menlo Park, Calif.: AAAI Press, 1996, pp. 59–82.

    Google Scholar 

  19. Elith J., Leathwick J., Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, Vol. 13, No. 3, 2007, pp. 265–275.

    Article  Google Scholar 

  20. Elith, J., Graham, C. H., Anderson, R. P., Dudk, M., Ferrier, S., Guisan, A., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, Vol. 29, 2006, pp. 129–151.

    Article  Google Scholar 

  21. Ferrier S., Guisan A., Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, Vol. 43, No. 3, 2006, pp. 393–404.

    Article  Google Scholar 

  22. Fielding A. H., editor. Machine Learning Methods for Ecological Applications. Boston (MA): Kluwer Academic Publishers, 1999.

    MATH  Google Scholar 

  23. Fielding, A.H. & J.F. Bell., A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, Vol. 24, 1997, pp. 38–49.

    Article  Google Scholar 

  24. Fielding, A.H., What are the appropriate characteristics of an accuracy measurement? In Predicting Species Occurrences: Issues of Accuracy and Scale. J.M. Scott et al., Eds., Island Press. Washington, D.C., 2002, pp. 271–280.

    Google Scholar 

  25. Friedman, J.H. and Stuetzle, W., Projection Pursuit Regression, Journal of the American Statistical Association, Vol. 76, 1981, pp. 817–823.

    Article  MathSciNet  Google Scholar 

  26. Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning. Reading (MA): Addison-Wesley, 1989.

    MATH  Google Scholar 

  27. Green, J. L., Hastings, A., Arzberger, P., Ayala, F. J., Cottingham, K. L., Cuddington, K., Davis, F., Dunne, J. A., Fortin M.J., Gerber, L., Neubert, M., Complexity in ecology and conservation: mathematical, statistical, and computational challenges, BioScience, Vol. 55, No. 6, 2005, pp. 01–510.

    Article  Google Scholar 

  28. Guégan J.-F., Lek S., Oberdorff T., Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature, Vol. 391, 1998, pp. 382–384.

    Google Scholar 

  29. Guisan A., Zimmermann N. E., Predictive habitat distribution models in ecology, Ecological Modelling, Vol. 135 (2–3), 2000, pp. 147–186.

    Google Scholar 

  30. Haykin, S., Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall, 1998.

    Google Scholar 

  31. Hernandez, P.A. et al., The effect of sample size and species characteristics on performance of different species distribution modelingmethods. Ecography, Vol. 29, 2006, pp. 773–785.

    Article  Google Scholar 

  32. Holland J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, Ann Arbor (MI): University of Michigan Press, 1975.

    Google Scholar 

  33. Hosmer, D.W. and Lemeshow, S., Applied Logistic Regression, 2nd edn. Wiley. New York, 2000.

    Book  MATH  Google Scholar 

  34. Huntley, B., Plant-species response to climate change—implications for the conservation of European birds, Ibis, Vol. 137, 1995, pp. S127— S138.

    Google Scholar 

  35. Iverson L. R., Prasad A. M., Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra. Landscape Ecology, Vol. 22, No. 3, 2007, pp. 323–331.

    Article  Google Scholar 

  36. Jeschke, J.M. and Strayer, D.L., Usefulness of Bioclimatic Models for Studying Climate Change and Invasive Species, Annals of the New York Academy of Sciences, Vol. 1134, 2008, pp. 1–24.

    Article  Google Scholar 

  37. Johnson, C.J. and Gillingham, M.P., An evaluation of mapped species distribution models used for conservation planning, Environ. Conserv. Vol. 32, 2005, pp. 117–128.

    Article  Google Scholar 

  38. Kadmon, R., Farber, O., and Danin, A., 2003. A systematicanalysis of factors affecting the performance ofclimatic envelope models. Ecol. Appl. Vol. 13, 2003, pp. 853–867.

    Google Scholar 

  39. Lawler, J.J. et al. 2006. Predicting climate-induced range shifts: model differences and model reliability, Global Change Biology, Vol. 12, 2006, pp. 1568–1584.

    Google Scholar 

  40. Liu, C. et al., Selecting thresholds of occurrence in the prediction of species distributions. Ecography, Vol. 28, 2005, pp. 385–393.

    Article  Google Scholar 

  41. Loiselle, B.A. et al., Avoiding pitfalls of using species distribution models in conservation planning, Conservation. Biology, Vol. 17, 2003, pp. 1591–1600.

    Article  Google Scholar 

  42. Lorena, A.C., Jacintho, L.F.O., Siqueira, M.F., Giovanni, R.D., Lohmann, L.G., Carvalho, A.C.P.L.F., and Yamamoto, M., Comparing Machine Learning Classifiers in Potential Distribution Modeling, Expert Systems with Applications, Vol. 38, 2011, pp. 5268–5275.

    Google Scholar 

  43. Manel, S., Dias, J.-M., Ormerod, S.J., Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird, Ecology Modellig, Vol. 120, 1999, pp. 337–347.

    Article  Google Scholar 

  44. Manel, S., Williams, H.C. & Ormerod, S.J., Evaluating presence-absence models in ecology: the need to account for prevalence, Journal of Applied Ecology, Vol. 38, 2001, pp. 921–931.

    Article  Google Scholar 

  45. Mastrorillo S., Lek S., Dauba F., Belaud A., The use of artificial neural networks to predict the presence of small-bodied fish in a river, Freshwater Biology, Vol. 38, No. 2, 1997, pp. 237–246.

    Article  Google Scholar 

  46. McCullagh, P., Nelder, J.A., Generalized Linear Models, Chapman & Hall, London, 1989.

    Book  MATH  Google Scholar 

  47. McKay R. I., Variants of genetic programming for species distribution modelling—fitness sharing, partial functions, population evaluation, Ecological Modelling, Vol. 146 (1–3), 2001, pp. 231–241.

    Google Scholar 

  48. McKenna J. E., Jr., Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin, Transactions of the American Fisheries Society, Vol. 134, No. 1, 2005, pp. 28–43.

    Article  MathSciNet  Google Scholar 

  49. Mercado-Silva N., Olden J. D., Maxted J. T., Hrabik T. R., Vander Zanden M. J., Forecasting the spread of invasive rainbow smelt in the Laurentian Great Lakes region of North America, Conservation Biology, Vol. 20, No. 6, 2006, pp. 1740–1749.

    Google Scholar 

  50. Meynard, C.N. and Quinn, J.F., Predicting species distributions: a critical comparison of the most common statistical models using artificial species, Journal of Biogeography, Vol. 34, 2007, pp. 1455–1469.

    Article  Google Scholar 

  51. Mitchell, T., Machine learning. McGraw Hill, 1997.

    Google Scholar 

  52. Muttil N., Lee J. H. W., Genetic programming for analysis and real-time prediction of coastal algal blooms, Ecological Modelling, Vol. 189(3–4), 2005, pp. 363–376.

    Google Scholar 

  53. O¨zesmi S. L., O¨ zesmi U. 1999. An artificial neural network approach to spatial habitat modelling with interspecific interaction, Ecological Modelling, Vol. 116, No. 1, 1999, pp. 15–31.

    Google Scholar 

  54. Olden J. D., Jackson D. A., A comparison of statistical approaches for modelling fish species distributions, Freshwater Biology, Vol. 47, No. 10, 2002, pp. 1976–1995.

    Article  Google Scholar 

  55. Olden J. D., Joy M. K., Death R. G., Rediscovering the species in community-wide modelling, Ecological Applications, Vol. 16, No. 4, 2006, pp. 1449–1460.

    Article  Google Scholar 

  56. Olden J. D., Poff N. L., Bledsoe B. P., Incorporating ecological knowledge into ecoinformatics: an example of modeling hierarchically structured aquatic communities with neural networks, Ecological Informatics, Vol. 1, No. 1, 2006, pp. 33–42.

    Article  Google Scholar 

  57. Olden, J.D., Jackson, D.A., Peres-Neto, P.R., Predictive models of fish species distributions: a note on proper validation and chance prediction, Transactions of the American Fisheries Society, Vol. 131, 2002, pp. 329–336.

    Article  Google Scholar 

  58. Olden, J.D., Lawler, J.J., Poff, N.L., Machine Learning Methods without Tears: A Primer for Ecologists, The Quarterly Review of Biology, Vol. 83, No. 2, 2008, pp. 171–193.

    Article  Google Scholar 

  59. Park Y.-S., Chon T.-S., Biologically-inspired machine learning implemented to ecological informatics, Ecological Modelling, Vol. 203 (1–2), 2007, pp. 1–7.

    Google Scholar 

  60. Pearce, J. and Ferrier, S., Evaluating the predictive performance of habitat models developed using logistic regression. Ecology Modeling, Vol. 133, 2000, pp. 225–245.

    Article  Google Scholar 

  61. Pearson, R.G. et al., Model-based uncertainty in species range prediction, Journal of Biogeography, Vol. 33, 2006, pp. 1704–1711.

    Article  Google Scholar 

  62. Pearson, R.G., Dawson, T.P., Berry, P.M., SPECIES: a spatial evaluation of climate impact on the envelope of species, Ecological Modelling, Vol. 154, 2006, pp. 289–300.

    Article  Google Scholar 

  63. Peters R. H., A Critique for Ecology. Cambridge (UK): Cambridge University Press, 1991.

    Google Scholar 

  64. Peterson A. T., Predicting species’ geographic distributions based on ecological niche modelling, Condor, Vol. 103, No. 3, 2001, pp. 599–605.

    Article  Google Scholar 

  65. Peterson A. T., Predicting the geography of species’ invasions via ecological niche modelling, Quarterly Review of Biology, Vol. 78, No. 4, 2003, pp. 419–433.

    Article  Google Scholar 

  66. Peterson A. T., Vieglais D. A., Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem, BioScience, Vol. 51, No. 5, 2001, pp. 363–371.

    Article  Google Scholar 

  67. Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R.H., Stockwell, D.R.B., Future projections for Mexican faunas under global climate change scenarios, Nature, Vol. 416, 2002, pp. 626–629.

    Article  Google Scholar 

  68. Peterson, A.T., Sanchez-Cordero, V., Soberon, J., Bartley, J., Buddemeier, R.W., Navarro-Siguenza, A.G., Effects of global climate change on geographic distributions of Mexican Cracidae, Ecological Modelling, Vol. 144, 2001, pp. 21–30.

    Article  Google Scholar 

  69. Quinlan, J. R., Induction of decision trees. Machine Learning, Vol. 1, No. 1, 1986, pp. 81–106.

    Google Scholar 

  70. Randin, C.F. et al., Are niche-based species distribution models transferable in space?, J.ournal of Biogeography, Vol. 33, 2006, pp. 1689–1703.

    Google Scholar 

  71. Recknagel F., Applications of machine learning to ecological modelling, Ecological Modelling, Vol. 146 (1–3), 2001, pp. 303–310.

    Google Scholar 

  72. Robertson, M.P., Villet, M.H. & Palmer, A.R., A fuzzy classification technique for predicting species’ distributions: applications using invasive alien plants and indigenous insects, Diversity Distribution, Vol. 10, 2004, pp. 461–474.

    Article  Google Scholar 

  73. Rollins M. G., Keane R. E., Parsons R. A., Mapping fuels and fire regimes using sensing, ecosystem simulation, and gradient modelling, Ecological Applications, Vol. 14, No. 1, 2004, pp. 75–95.

    Article  Google Scholar 

  74. Rouget, M., Richardson, D.M., Milton, S.J., Polakow, D., Predicting invasion dynamics of four alien Pinus species in a highly fragmented semi-arid shrubland in South-Africa, Plant Ecology, Vol. 152, 2001, pp. 79–92.

    Article  Google Scholar 

  75. Sarkar S., Pressey R. L., Faith D. P., Margules C. R., Fuller T., Stoms D. M., Moffett A., Wilson K. A., Williams K. J., Williams P. H., Andelman S, Biodiversity conservation planning tools: present status and challenges for the future, Annual Review of Environment and Resources, Vol. 31, 2006, pp. 123–159.

    Article  Google Scholar 

  76. Scardi M., Harding L. W., Jr., Developing an empirical model of phytoplankton primary production: a neural network case study, Ecological Modelling, Vol. 120 (2–3), 1999, pp. 213–223.

    Google Scholar 

  77. Schussman, H. et al., Spread and current potential distribution of an alien grass, Eragrostis lehmanniana Nees, in the southwestern USA: comparing historical data and ecological niche models, Diversity Distribution, Vol. 12, 2006, pp. 81–89.

    Article  Google Scholar 

  78. Seoane, J., Bustamante, J., Diaz-Delgado, R., Competing roles for landscape, vegetation, topography and climate in predictive models of bird distribution. Ecological Modelling, Vol. 171, 2004, pp. 209–222.

    Article  Google Scholar 

  79. Spitz F., Lek S., Environmental impact prediction using neural network modelling: an example in wildlife damage, Journal of Applied Ecology, Vol. 36, No. 2, 1999, pp. 317–326.

    Article  Google Scholar 

  80. Stockwell D. R. B., Improving ecological niche models by data mining large environmental datasets for surrogate models, Ecological Modelling, Vol. 192 (1–2), 2006, pp. 188–196.

    Google Scholar 

  81. Stockwell, D. R. B., & Peters, D. P., The GARP modelling system: Problems and solutions to automated spatial prediction, International Journal of Geographic Information Systems, Vol. 13, 1999, pp. 143–158.

    Article  Google Scholar 

  82. Termansen M., McClean C. J., Preston C. D., The use of genetic algorithms and Bayesian classification to model species distributions, Ecological Modelling, Vol. 192 (3–4), 2006, pp. 410–424.

    Google Scholar 

  83. Thuiller, W., BIOMOD - optimising predictions of species distributions and projecting potential future shifts under global change, Global Change Biology, Vol. 9, 2003, pp. 1353–1362.

    Article  Google Scholar 

  84. Torres L. G., Rosel P. E., D’Agrosa C., Read A. J., Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics, Marine Mammal Science, Vol. 19, No. 3, 2003, pp. 502–514.

    Article  Google Scholar 

  85. Tsoar, A. et al., A comparative evaluation of presence-only methods for modelling species distribution, Diversity Distribution, Vol. 13, 2007, pp. 397–405.

    Article  Google Scholar 

  86. Usio N., Endangered crayfish in northern Japan: distribution, abundance and microhabitat specificity in relation to stream and riparian environment, Biological Conservation, Vol. 134, No. 4, 2007, pp. 517–526.

    Article  Google Scholar 

  87. Vander Zanden M. J., Olden J. D., Thorne J. H., Mandrak N. E., Predicting occurrences and impacts of smallmouth bass introductions in north temperate lakes, Ecological Applications, Vol. 14, No. 1, 2004, pp. 132–148.

    Google Scholar 

  88. Vaughan, I.P. & Ormerod, S.J., The continuing challenges of testing species distribution models. Journal of Applied Ecology, Vol. 42, 2005, pp. 720–730.

    Article  Google Scholar 

  89. Vayssieres, M.P., Plant, R.E., Allen-Diaz, B.H., Classification trees: an alternative non-parametric approach for predicting speciers distributions, Journal of Vegetation Science, Vol. 11, 2000, pp. 679–694.

    Article  Google Scholar 

  90. Worner S. P., Gevrey M., Modelling global insect pest species assemblages to determine risk of invasion, Journal of Applied Ecology, Vol. 43, No. 5, 2006, pp. 858–867.

    Article  Google Scholar 

  91. Zeman, P. & Lynen, G., Evaluation of four modelling techniques to predict the potential distribution of ticks using indigenous cattle infestations as calibration data. Experimental and Applied Acarology, Vol. 39, 2006, pp. 163–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maumita Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhattacharya, M. (2015). Bioclimatic Modelling: A Machine Learning Perspective. In: Sobh, T., Elleithy, K. (eds) Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering. Lecture Notes in Electrical Engineering, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-319-06773-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06773-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06772-8

  • Online ISBN: 978-3-319-06773-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics