Skip to main content

Ordinal Measures Based on Directional Ordinal Wavelet Filters

  • Chapter
  • First Online:
Book cover Iris Image Recognition

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSSIGNAL))

Abstract

This chapter presents the design of the new class of triplet half-band checkerboard shaped filter bank (THCSFB) to solve the issue in the design of proposed non-separable FBs. This chapter also describes the directional ordinal measures (DOMs) for iris image representation based on THCSFB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun Z, Tan T (2009) Ordinal measures for iris recognition. IEEE Trans Pattern Anal Mach Intell 31(12):2211–2226

    Google Scholar 

  2. Velisavljević V (2009) Low-complexity iris coding and recognition based on directionlets. IEEE Trans Inf Forensic Secur 4(3):410–417

    Google Scholar 

  3. Bamberger R, Smith M (1992) A filter bank for the directional decomposition of images: theory and design. IEEE Trans Signal Process 40:882–893

    Article  Google Scholar 

  4. Do M, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Google Scholar 

  5. Candes E, Demanet L, Donoho D (2005) Fast discrete curvelet transform. Technical report, CalTech

    Google Scholar 

  6. Kingsbury N (2002) Complex wavelets for shift invariant analysis and filtering of signals. J Appl Comput Harmon Anal 10(3):234–253

    Google Scholar 

  7. Kokare M, Biswas P, Chatterji B (2005) Texture image retrieval using new rotated complex wavelet fitlers. IEEE Trans Syst Man Cybern B Cybern 35(6):1168–1178

    Article  Google Scholar 

  8. Donoho DL (1999) Wedgelets: nearly minimax estimation of edges. Ann Stat 27(3):859–897

    Article  MATH  MathSciNet  Google Scholar 

  9. Candes E, Donoho DL (1999) Ridgelets: a key to higher dimensional intermittency? Philos Trans R Soc Lond 357:2495–2509

    Google Scholar 

  10. Pennec E, Mallat S (2005) Sparse geometric image representation with bandelets. IEEE Trans Image Process 14(4):423–438

    Google Scholar 

  11. Eslami R, Radha H (2007) A new family of nonredundant transforms using hybrid wavelets and directional filter banks. IEEE Trans Image Process 16(4):1152–1167

    Google Scholar 

  12. Lu Y, Do M (2005) The finer directional wavelet transform. In: Proceedings of the IEEE ICASSP, Philadelphia

    Google Scholar 

  13. Phoong S, Kim C, Vaidyanathan P, Ansari R (1995) A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans Signal Process 43(3):649–665

    Article  Google Scholar 

  14. Ansari R, Kim C, Dedovic M (1999) Structure and design of two-channel filter banks derived from a triplet of halfband filters. IEEE Trans Circuits Syst II Analog Digit Signal Process 46(12):1487–1496

    Google Scholar 

  15. Eslami R, Radha H (2010) Design of regular wavelets using a three-step lifting scheme. IEEE Trans Signal Process 58(4):2088–2101

    Google Scholar 

  16. Kovacevic J, Sweldens W (2000) Wavelet families of increasing order in arbitrary dimensions. IEEE Trans Image Process 9(3):480–496

    Google Scholar 

  17. Tanaka Y, Ikehara M, Nguyen TQ (2009) Multiresolution image representation using combined 2-D and 1-D directional filter banks. IEEE Trans Image Process 2:466–480

    Google Scholar 

  18. Tay DBH, Kingsbury N (1993) Flexible design of multidimensional perfect reconstruction FIR 2-band filter-banks using transformation of variables. IEEE Trans Image Process 2:466–480

    Article  Google Scholar 

  19. Kim N, Udpa S (2000) Texture classification using rotated wavelet filters. IEEE Trans Syst Man Cybern Part A Syst Hum 30(6):847–852

    Article  Google Scholar 

  20. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 25(11):1148–1161

    Google Scholar 

  21. Chen Y, Dass S, Jain A (2006) Localized iris image quality using 2-D wavelets. In Proceedings of international conference on biometrics, pp 373–381

    Google Scholar 

  22. Ross A, Jain A (2003) Information fusion in biometrics. Pattern Recogn Lett 24(13):2115–2125

    Article  Google Scholar 

  23. Monro DM, Rakshit S, Zhang D (2007) DCT based iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595

    Google Scholar 

  24. Dong W, Tan T, Sun Z (2010) Iris matching based on personalized weight map. IEEE Trans Pattern Anal Mach Intell 99(1):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol D. Rahulkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Rahulkar, A.D., Holambe, R.S. (2014). Ordinal Measures Based on Directional Ordinal Wavelet Filters. In: Iris Image Recognition. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-06767-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06767-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06766-7

  • Online ISBN: 978-3-319-06767-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics