Advertisement

Canonical Superenergy Tensors in General Relativity: A Reappraisal

  • Janusz GareckiEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)

Abstract

We discuss the role of the canonical superenergy tensors.

Notes

Acknowledgments

This paper was mainly supported by Polish Ministry of Science and Higher Education Grant No 505-4000-25-0976 (years 2011–2013). Author also would like to thank Professor Jiří Bičák for possibility to deliver talk during the Conference “Relativity and Gravitation – 100 years after Einstein in Prague”.

References

  1. 1.
    Garecki, J.: Energy and superenergy of a closed universe. Rep. Math. Phys. 33, 57 (1993). doi: 10.1016/0034-4877(93)90040-L ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Garecki, J.: Energy-momentum and angular momentum of isotropic homogeneous cosmological models in a gauge theory of gravity. Int. J. Theor. Phys. 34, 2307 (1995). doi: 10.1007/BF00673845 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Garecki, J.: Canonical angular supermomentum tensors in general relativity. J. Math. Phys. 40, 4035 (1999). doi: 10.1063/1.532941 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Garecki, J.: Do gravitational waves carry energy-momentum and angular momentum? Ann. Phys. (Berlin) 11, 442 (2002). doi: 10.1002/1521-3889(200206)11:6<442::AID-ANDP442>3.0.CO;2-A
  5. 5.
    Da̧browski, M., Garecki, J.: Superenergy and supermomentum of Gödel universes. Class. Quantum Gravity 19, 1 (2002). doi: 10.1088/0264-9381/19/1/301
  6. 6.
    Garecki, J.: On the gravitational energy of the Bonnor spacetime. Class. Quantum Gravity 22, 4051 (2005). doi: 10.1088/0264-9381/22/19/015 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garecki, J.: The tensors of the averaged relative energy momentum and angular momentum in general relativity and some of their applications. Found. Phys. 37, 341 (2007). doi: 10.1007/s10701-007-9107-y ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Da̧browski, M., Garecki, J.: Statefinders and observational measurement of superenergy. Phys. Lett. B 686, 6 (2010). doi: 10.1016/j.physletb.2010.02.019
  9. 9.
    Garecki, J.: A superenergetic analysis of the plane and plane-fronted gravitational waves. Rep. Math. Phys. 40, 485 (1997). doi: 10.1016/S0034-4877(97)85897-1 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Garecki, J.: Superenergy and angular supermomentum tensors in general relativity. Rep. Math. Phys. 44, 95 (1999). doi: 10.1016/S0034-4877(99)80149-9 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Garecki, J.: Superenergy, conformal transformations, and Friedman universes. Ann. Phys. (Berlin) 19, 263 (2010). doi: 10.1002/andp.201010424
  12. 12.
    Synge, J.: Relativity: The General Theory. North-Holland, Amsterdam (1960)zbMATHGoogle Scholar
  13. 13.
    Appel, P.: Sur une forme générale des équations de la dynamique. J. reine angew. Math. 1900(121), 310 (1900). doi: 10.1515/crll.1900.121.310 Google Scholar
  14. 14.
    Appel, P.: Sur une forme générale des équations de la dynamique et sur le principe de gauss. J. reine angew. Math. 1900(122), 205 (1900). doi: 10.1515/crll.1900.122.205 Google Scholar
  15. 15.
    Białkowski, G.: Classical Mechanics. PWN, Warsaw (1975). In PolishGoogle Scholar
  16. 16.
    Da̧browski, M., Garecki, J., Blaschke, D.: Conformal transformations and conformal invariance in gravitation. Ann. Phys. (Berlin) 18, 13 (2009). doi: 10.1002/andp.200810331

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Mathematics University of Szczecin and Cosmology Group University of SzczecinSzczecinPoland

Personalised recommendations