Advertisement

Quasi-normal Frequencies, Horizon Area Spectra and Multi-horizon Spacetimes

  • Jozef SkákalaEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)

Abstract

We analyse the behavior of the asymptotic frequencies of the spherically symmetric multi-horizon spacetimes (in particular Reissner-Nordström, Schwarzschild-deSitter, Reissner-Nordström-deSitter) and provide some suggestions for how to interpret the results following the spirit of the modified Hod’s conjecture. The interpretation suggested is in some sense analogical to the Schwarzschild case, but has some new specific features.

References

  1. 1.
    Skákala, J.: Non-extremal Reissner-Nordström black hole: do asymptotic quasi-normal modes carry information about the quantum properties of the black hole? J. High Energy Phys. 2012(01), 144 (2012). doi: 10.1007/JHEP01(2012)144 CrossRefGoogle Scholar
  2. 2.
    Skakala, J.: Quasinormal modes, area spectra and multi-horizon spacetimes. J. High Energy Phys. 2012(06), 094 (2012). doi: 10.1007/JHEP06(2012)094 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Skakala, J., Visser, M.: Generic master equations for quasi-normal frequencies. J. High Energy Phys. 2010(11), 070 (2010). doi: 10.1007/JHEP11(2010)070 CrossRefGoogle Scholar
  4. 4.
    Skakala, J., Visser, M.: Semi-analytic results for quasi-normal frequencies. J. High Energy Phys. 2010(08), 061 (2010). doi: 10.1007/JHEP08(2010)061 CrossRefGoogle Scholar
  5. 5.
    Hod, S.: Bohr’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 81, 4293 (1998). doi: 10.1103/PhysRevLett.81.4293 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Maggiore, M.: The Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 100, 141301 (2008). doi: 10.1103/PhysRevLett.100.141301 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Choudhury, T., Padmanabhan, T.: Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild-de Sitter metric. Gen. Relativ. Gravit. 39, 1789 (2007). doi: 10.1007/s10714-007-0489-0 ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.UFABCSão PauloBrazil

Personalised recommendations