Lagrangian Analysis of ‘Trivial’ Symmetries in Models of Gravity

  • Debraj RoyEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)


We study the differences between Poincaré and canonical Hamiltonian symmetries in models of gravity through the corresponding Noether identities and show that they are equivalent modulo trivial gauge symmetries.


Gauge Theory Gauge Symmetry Gauge Parameter Local Orthonormal Frame Gauge Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Utiyama, R.: Invariant theoretical interpretation of interactions. Phys. Rev. 101, 1597 (1956). doi: 10.1103/PhysRev.101.1597 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Kibble, T.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961). doi: 10.1063/1.1703702 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Sciama, D.: On the analogy between charge and spin in general relativity. In: Recent Developments in General Relativity, pp. 415–439. Pergamon Press/PWN, New York (1962)Google Scholar
  4. 4.
    Hehl, F., von der Heyde, P., Kerlick, G., Nester, J.: General relativity with spin and torsion: foundation and prospects. Rev. Mod. Phys. 48, 393 (1976). doi: 10.1103/RevModPhys.48.393 ADSCrossRefGoogle Scholar
  5. 5.
    Henneaux, M., Teitelboim, C., Zanelli, J.: Gauge invariance and degree of freedom count. Nucl. Phys. B 332, 169 (1990). doi: 10.1016/0550-3213(90)90034-B ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mielke, E., Baekler, P.: Topological gauge model of gravity with torsion. Phys. Lett. A A156, 399 (1991). doi: 10.1016/0375-9601(91)90715-K ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Blagojevic, M., Cvetkovic, B.: Canonical structure of 3-D gravity with torsion. In: Benton, C.V. (ed.) Trends in General Relativty and Quantum Cosmology, Horizons in World Physics, vol. 253, pp. 103–123. Nova Science Publishers, New York (2006)Google Scholar
  8. 8.
    Banerjee, R., Rothe, H., Rothe, K.: Hamiltonian approach to Lagrangian gauge symmetries. Phys. Lett. B 463, 248 (1999). doi: 10.1016/S0370-2693(99)00977-6 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Banerjee, R., Rothe, H., Rothe, K.: Master equation for Lagrangian gauge symmetries. Phys. Lett. B 479, 429 (2000). doi: 10.1016/S0370-2693(00)00323-3 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Banerjee, R., Gangopadhyay, S., Mukherjee, P., Roy, D.: Symmetries of topological gravity with torsion in the hamiltonian and lagrangian formalisms. J. High Energy Phys. 2010(02), 075 (2010). doi: 10.1007/JHEP02(2010)075 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Banerjee, R., Roy, D.: Poincare gauge symmetries, Hamiltonian symmetries and trivial gauge transformations. Phys. Rev. D 84, 124034 (2011). doi: 10.1103/PhysRevD.84.124034 ADSCrossRefGoogle Scholar
  12. 12.
    Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.S. N. Bose National Centre for Basic SciencesKolkataIndia

Personalised recommendations