Advertisement

On the Stability Operator for MOTS and the ‘Core’ of Black Holes

  • José M. M. SenovillaEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)

Abstract

Small deformations of marginally (outer) trapped surfaces are considered by using their stability operator. In the case of spherical symmetry, one can use these deformations on any marginally trapped round sphere to prove several interesting results. The concept of ‘core’ of a black hole is introduced: it is a minimal region that one should remove from the spacetime in order to get rid of all possible closed trapped surfaces. In spherical symmetry one can prove that the spherical marginally trapped tube is the boundary of a core. By using a novel formula for the principal eigenvalue of the stability operator, I will argue how to pursue similar results in general black-hole spacetimes.

Notes

Acknowledgments

Supported by grants FIS2010-15492 (MICINN), GIU06/37 (UPV/EHU) and P09-FQM- 4496 (J. Andalucía–FEDER) and UFI 11/55 (UPV/EHU).

References

  1. 1.
    Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relativ. 7(10), lrr-2004-10 (2004). http://www.livingreviews.org/lrr-2004-10
  3. 3.
    Senovilla, J.: Classification of spacelike surfaces in spacetime. Class. Quantum Grav. 24, 3091 (2007). doi: 10.1088/0264-9381/24/11/020 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Senovilla, J.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139 (2011). doi: 10.1142/S0218271811020354 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefzbMATHGoogle Scholar
  6. 6.
    Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). doi: 10.1103/PhysRevLett.95.111102 ADSCrossRefGoogle Scholar
  7. 7.
    Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hawking, S., Ellis, G.: The Large Scale Structure of Space–Time. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge (1973)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bengtsson, I., Senovilla, J.: Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 83, 044012 (2011). doi: 10.1103/PhysRevD.83.044012 ADSCrossRefGoogle Scholar
  10. 10.
    Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys. 290, 941 (2009). doi: 10.1007/s00220-008-0723-y ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Åman, J., Bengtsson I., Senovilla J.: Where are the trapped surfaces? In: Lazkoz, R., Vera, R. (eds.) Gravitation in the Large, J. Phys.: Conf. Ser., vol. 229, p. 012004 (IOP, 2010). doi:  10.1088/1742-6596/229/1/012004
  12. 12.
    Bengtsson, I., Senovilla, J.: Note on trapped surfaces in the Vaidya solution. Phys. Rev. D 79, 024027 (2009). doi: 10.1103/PhysRevD.79.024027 ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Física TeóricaUniversidad del País VascoBilbaoSpain

Personalised recommendations