Advertisement

Geodesic Equations and Algebro-Geometric Methods

  • Eva HackmannEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 157)

Abstract

For an investigation of the physical properties of gravitational fields the observation of massive test particles and light is very useful. The characteristic features of a given space-time may be decoded by studying the complete set of all possible geodesic motions. Such a thorough analysis can be accomplished most effectively by using analytical methods to solve the geodesic equation. In this contribution, the use of elliptic functions and their generalizations for solving the geodesic equation in a wide range of well known space-times, which are part of the general Plebański-Demiański family of solutions, will be presented. In addition, the definition and calculation of observable effects like the perihelion shift will be presented and further applications of the presented methods will be outlined.

References

  1. 1.
    Griffiths, J., Podolský, J.: A new look at the Plebański-Demiański family of solutions. Int. J. Mod. Phys. 15, 335 (2006). doi: 10.1142/S0218271806007742 ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Hagihara, Y.: Theory of relativistic trajectories in a gravitational field of Schwarzschild. Jpn. J. Astron. Geophys. 8, 67 (1931)MathSciNetGoogle Scholar
  3. 3.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. International Series of Monographs on Physics. Oxford University Press, Oxford (1983)Google Scholar
  4. 4.
    Mino, Y.: Perturbative approach to an orbital evolution around a supermassive black hole. Phys. Rev. D 67, 084027 (2003). doi: 10.1103/PhysRevD.67.084027 ADSCrossRefGoogle Scholar
  5. 5.
    Fujita, R., Hikida, W.: Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quantum Grav. 26, 135002 (2009). doi: 10.1088/0264-9381/26/13/135002 ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hackmann, E., Lämmerzahl, C.: Complete analytic solution of the geodesic equation in Schwarzschild-(anti) de Sitter space-times. Phys. Rev. Lett. 100, 171101 (2008). doi: 10.1103/PhysRevLett.100.171101 ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Analytic solutions of the geodesic equation in axially symmetric space-times. Europhys. Lett. 88, 30008 (2009). doi: 10.1209/0295-5075/88/30008 ADSCrossRefGoogle Scholar
  8. 8.
    Schmidt, W.: Celestial mechanics in Kerr spacetime. Class. Quantum Grav. 19, 2743 (2002). doi: 10.1088/0264-9381/19/10/314 ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Drasco, S., Hughes, S.: Rotating black hole orbit functionals in the frequency domain. Phys. Rev. D 69, 044015 (2004). doi: 10.1103/PhysRevD.69.044015 ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Farkas, H., Kra, I.: Riemann Surfaces, Graduate Texts in Mathematics, vol. 71. Springer, Berlin (1992)CrossRefGoogle Scholar
  11. 11.
    Bičák, J., Schmidt, B.: Asymptotically flat radiative space-times with boost-rotation symmetry: the general structure. Phys. Rev. D 40, 1827 (1989). doi: 10.1103/PhysRevD.40.1827 ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lense, J., Thirring, H.: Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19(8), 156 (1918)zbMATHGoogle Scholar
  13. 13.
    Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes. Phys. Rev. D 78, 124018 (2008). doi: 10.1103/PhysRevD.78.124018 ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Enolski, V., Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity. J. Geom. Phys. 61(5), 899 (2011). doi: 10.1016/j.geomphys.2011.01.001 ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kagramanova, V., Reimers, S.: Analytic treatment of geodesics in five-dimensional Myers-Perry space-times. Phys. Rev. D 86, 084029 (2012). doi: 10.1103/PhysRevD.86.084029 ADSCrossRefGoogle Scholar
  16. 16.
    Bost, J.B., Mestre, J.F.: Moyenne Arithmético-géométrique et Périodes des Courbes de genre 1 et 2. Gaz. Math. Soc. France 38, 36 (1988)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Braden, H., D’Avanzo, A., Enolski, V.: On charge-3 cyclic monopoles. Nonlinearity 24, 643 (2011). doi: 10.1088/0951-7715/24/3/001 ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.ZARMUniversität BremenBremenGermany

Personalised recommendations